fail-fast機制


先了解一些詞語

volatile:volatile的本意是“易變的”。volatile關鍵字是一種類型修飾符,用它聲明的類型變量表示可以被某些編譯器未知的因素更改,比如:操作系統、硬件或者其它線程等。遇到這個關鍵字聲明的變量,編譯器對訪問該變量的代碼就不再進行優化,從而可以提供對特殊地址的穩定訪問。當要求使用volatile 聲明的變量的值的時候,系統總是重新從它所在的內存讀取數據,即使它前面的指令剛剛從該處讀取過數據。而且讀取的數據立刻被保存。volatile 指出 i是隨時可能發生變化的,每次使用它的時候必須從i的地址中讀取。對於volatile類型的變量,系統每次用到他的時候都是直接從對應的內存當中提取,而不會利用cache當中的原有數值,以適應它的未知何時會發生的變化。

fail-fast 機制是java集合(Collection)中的一種錯誤機制。當多個線程對同一個集合的內容進行操作時,就可能會產生fail-fast事件。
例如:當某一個線程A通過iterator去遍歷某集合的過程中,若該集合的內容被其他線程所改變了;那么線程A訪問集合時,就會拋出ConcurrentModificationException異常,產生fail-fast事件。在詳細介紹fail-fast機制的原理之前,先通過一個示例來認識fail-fast。

 

import java.util.*;
import java.util.concurrent.*;

/*
 * @desc java集合中Fast-Fail的測試程序。
 *
 *   fast-fail事件產生的條件:當多個線程對Collection進行操作時,若其中某一個線程通過iterator去遍歷集合時,該集合的內容被其他線程所改變;則會拋出ConcurrentModificationException異常。
 *   fast-fail解決辦法:通過util.concurrent集合包下的相應類去處理,則不會產生fast-fail事件。
 *
 *   本例中,分別測試ArrayList和CopyOnWriteArrayList這兩種情況。ArrayList會產生fast-fail事件,而CopyOnWriteArrayList不會產生fast-fail事件。
 *   (01) 使用ArrayList時,會產生fast-fail事件,拋出ConcurrentModificationException異常;定義如下:
 *            private static List<String> list = new ArrayList<String>();
 *   (02) 使用時CopyOnWriteArrayList,不會產生fast-fail事件;定義如下:
 *            private static List<String> list = new CopyOnWriteArrayList<String>();
 *
 * @author skywang
 */
public class FastFailTest {

    private static List<String> list = new ArrayList<String>();
    //private static List<String> list = new CopyOnWriteArrayList<String>();
    public static void main(String[] args) {
    
        // 同時啟動兩個線程對list進行操作!
        new ThreadOne().start();
        new ThreadTwo().start();
    }

    private static void printAll() {
        System.out.println("");

        String value = null;
        Iterator iter = list.iterator();
        while(iter.hasNext()) {
            value = (String)iter.next();
            System.out.print(value+", ");
        }
    }

    /**
     * 向list中依次添加0,1,2,3,4,5,每添加一個數之后,就通過printAll()遍歷整個list
     */
    private static class ThreadOne extends Thread {
        public void run() {
            int i = 0;
            while (i<6) {
                list.add(String.valueOf(i));
                printAll();
                i++;
            }
        }
    }

    /**
     * 向list中依次添加10,11,12,13,14,15,每添加一個數之后,就通過printAll()遍歷整個list
     */
    private static class ThreadTwo extends Thread {
        public void run() {
            int i = 10;
            while (i<16) {
                list.add(String.valueOf(i));
                printAll();
                i++;
            }
        }
    }

}
View Code

 

運行結果
運行該代碼,拋出異常java.util.ConcurrentModificationException!即,產生fail-fast事件!

結果說明
(01) FastFailTest中通過 new ThreadOne().start() 和 new ThreadTwo().start() 同時啟動兩個線程去操作list。
    ThreadOne線程:向list中依次添加0,1,2,3,4,5。每添加一個數之后,就通過printAll()遍歷整個list。
    ThreadTwo線程:向list中依次添加10,11,12,13,14,15。每添加一個數之后,就通過printAll()遍歷整個list。
(02) 當某一個線程遍歷list的過程中,list的內容被另外一個線程所改變了;就會拋出ConcurrentModificationException異常,產生fail-fast事件。

 

fail-fast解決辦法

fail-fast機制,是一種錯誤檢測機制。它只能被用來檢測錯誤,因為JDK並不保證fail-fast機制一定會發生。若在多線程環境下使用fail-fast機制的集合,建議使用“java.util.concurrent包下的類”去取代“java.util包下的類”。
所以,本例中只需要將ArrayList替換成java.util.concurrent包下對應的類即可。

fail-fast原理

產生fail-fast事件,是通過拋出ConcurrentModificationException異常來觸發的。
那么,ArrayList是如何拋出ConcurrentModificationException異常的呢?

我們知道,ConcurrentModificationException是在操作Iterator時拋出的異常。我們先看看Iterator的源碼。ArrayList的Iterator是在父類AbstractList.java中實現的。代碼如下:

package java.util;

public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {

    ...

    // AbstractList中唯一的屬性
    // 用來記錄List修改的次數:每修改一次(添加/刪除等操作),將modCount+1
    protected transient int modCount = 0;

    // 返回List對應迭代器。實際上,是返回Itr對象。
    public Iterator<E> iterator() {
        return new Itr();
    }

    // Itr是Iterator(迭代器)的實現類
    private class Itr implements Iterator<E> {
        int cursor = 0;

        int lastRet = -1;

        // 修改數的記錄值。
        // 每次新建Itr()對象時,都會保存新建該對象時對應的modCount;
        // 以后每次遍歷List中的元素的時候,都會比較expectedModCount和modCount是否相等;
        // 若不相等,則拋出ConcurrentModificationException異常,產生fail-fast事件。
        int expectedModCount = modCount;

        public boolean hasNext() {
            return cursor != size();
        }

        public E next() {
            // 獲取下一個元素之前,都會判斷“新建Itr對象時保存的modCount”和“當前的modCount”是否相等;
            // 若不相等,則拋出ConcurrentModificationException異常,產生fail-fast事件。
            checkForComodification();
            try {
                E next = get(cursor);
                lastRet = cursor++;
                return next;
            } catch (IndexOutOfBoundsException e) {
                checkForComodification();
                throw new NoSuchElementException();
            }
        }

        public void remove() {
            if (lastRet == -1)
                throw new IllegalStateException();
            checkForComodification();

            try {
                AbstractList.this.remove(lastRet);
                if (lastRet < cursor)
                    cursor--;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException e) {
                throw new ConcurrentModificationException();
            }
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    ...
}
View Code

從中,我們可以發現在調用 next() 和 remove()時,都會執行 checkForComodification()。若 “modCount 不等於 expectedModCount”,則拋出ConcurrentModificationException異常,產生fail-fast事件。

要搞明白 fail-fast機制,我們就要需要理解什么時候“modCount 不等於 expectedModCount”!
從Itr類中,我們知道 expectedModCount 在創建Itr對象時,被賦值為 modCount。通過Itr,我們知道:expectedModCount不可能被修改為不等於 modCount。所以,需要考證的就是modCount何時會被修改。

接下來,我們查看ArrayList的源碼,來看看modCount是如何被修改的。

package java.util;

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{

    ...

    // list中容量變化時,對應的同步函數
    public void ensureCapacity(int minCapacity) {
        modCount++;
        int oldCapacity = elementData.length;
        if (minCapacity > oldCapacity) {
            Object oldData[] = elementData;
            int newCapacity = (oldCapacity * 3)/2 + 1;
            if (newCapacity < minCapacity)
                newCapacity = minCapacity;
            // minCapacity is usually close to size, so this is a win:
            elementData = Arrays.copyOf(elementData, newCapacity);
        }
    }


    // 添加元素到隊列最后
    public boolean add(E e) {
        // 修改modCount
        ensureCapacity(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }


    // 添加元素到指定的位置
    public void add(int index, E element) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(
            "Index: "+index+", Size: "+size);

        // 修改modCount
        ensureCapacity(size+1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
             size - index);
        elementData[index] = element;
        size++;
    }

    // 添加集合
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        // 修改modCount
        ensureCapacity(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }
   

    // 刪除指定位置的元素 
    public E remove(int index) {
        RangeCheck(index);

        // 修改modCount
        modCount++;
        E oldValue = (E) elementData[index];

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index, numMoved);
        elementData[--size] = null; // Let gc do its work

        return oldValue;
    }


    // 快速刪除指定位置的元素 
    private void fastRemove(int index) {

        // 修改modCount
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // Let gc do its work
    }

    // 清空集合
    public void clear() {
        // 修改modCount
        modCount++;

        // Let gc do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    }

    ...
}
View Code

從中,我們發現:無論是add()、remove(),還是clear(),只要涉及到修改集合中的元素個數時,都會改變modCount的值。

接下來,我們再系統的梳理一下fail-fast是怎么產生的。步驟如下:
(01) 新建了一個ArrayList,名稱為arrayList。
(02) 向arrayList中添加內容。
(03) 新建一個“線程a”,並在“線程a”中通過Iterator反復的讀取arrayList的值
(04) 新建一個“線程b”,在“線程b”中刪除arrayList中的一個“節點A”。
(05) 這時,就會產生有趣的事件了。
       在某一時刻,“線程a”創建了arrayList的Iterator。此時“節點A”仍然存在於arrayList中,創建arrayList時,expectedModCount = modCount(假設它們此時的值為N)。
       在“線程a”在遍歷arrayList過程中的某一時刻,“線程b”執行了,並且“線程b”刪除了arrayList中的“節點A”。“線程b”執行remove()進行刪除操作時,在remove()中執行了“modCount++”,此時modCount變成了N+1
“線程a”接着遍歷,當它執行到next()函數時,調用checkForComodification()比較“expectedModCount”和“modCount”的大小;而“expectedModCount=N”,“modCount=N+1”,這樣,便拋出ConcurrentModificationException異常,產生fail-fast事件。

至此,我們就完全了解了fail-fast是如何產生的!
即,當多個線程對同一個集合進行操作的時候,某線程訪問集合的過程中,該集合的內容被其他線程所改變(即其它線程通過add、remove、clear等方法,改變了modCount的值);這時,就會拋出ConcurrentModificationException異常,產生fail-fast事件。

上面,說明了“解決fail-fast機制的辦法”,也知道了“fail-fast產生的根本原因”。接下來,聊聊並發-Java中的Copy-On-Write容器

Copy-On-Write簡稱COW,是一種用於程序設計中的優化策略。其基本思路是,從一開始大家都在共享同一個內容,當某個人想要修改這個內容的時候,才會真正把內容Copy出去形成一個新的內容然后再改,這是一種延時懶惰策略。從JDK1.5開始Java並發包里提供了兩個使用CopyOnWrite機制實現的並發容器,它們是CopyOnWriteArrayList和CopyOnWriteArraySet。CopyOnWrite容器非常有用,可以在非常多的並發場景中使用到。

什么是CopyOnWrite容器

CopyOnWrite容器即寫時復制的容器。通俗的理解是當我們往一個容器添加元素的時候,不直接往當前容器添加,而是先將當前容器進行Copy,復制出一個新的容器,然后新的容器里添加元素,添加完元素之后,再將原容器的引用指向新的容器。這樣做的好處是我們可以對CopyOnWrite容器進行並發的讀,而不需要加鎖,因為當前容器不會添加任何元素。所以CopyOnWrite容器也是一種讀寫分離的思想,讀和寫不同的容器。

 

CopyOnWriteArrayList的實現原理

在使用CopyOnWriteArrayList之前,我們先閱讀其源碼了解下它是如何實現的。以下代碼是向ArrayList里添加元素,可以發現在添加的時候是需要加鎖的,否則多線程寫的時候會Copy出N個副本出來

public boolean add(T e) {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {

        Object[] elements = getArray();

        int len = elements.length;
        // 復制出新數組

        Object[] newElements = Arrays.copyOf(elements, len + 1);
        // 把新元素添加到新數組里

        newElements[len] = e;
        // 把原數組引用指向新數組

        setArray(newElements);

        return true;

    } finally {

        lock.unlock();

    }

}

final void setArray(Object[] a) {
    array = a;
}
View Code

讀的時候不需要加鎖,如果讀的時候有多個線程正在向ArrayList添加數據,讀還是會讀到舊的數據,因為寫的時候不會鎖住舊的ArrayList。

public E get(int index) {
    return get(getArray(), index);
}

CopyOnWrite的應用場景

CopyOnWrite並發容器用於讀多寫少的並發場景。比如白名單,黑名單,商品類目的訪問和更新場景,假如我們有一個搜索網站,用戶在這個網站的搜索框中,輸入關鍵字搜索內容,但是某些關鍵字不允許被搜索。這些不能被搜索的關鍵字會被放在一個黑名單當中,黑名單每天晚上更新一次。當用戶搜索時,會檢查當前關鍵字在不在黑名單當中,如果在,則提示不能搜索。實現代碼如下:

package com.ifeve.book;

import java.util.Map;

import com.ifeve.book.forkjoin.CopyOnWriteMap;

/**
 * 黑名單服務
 *
 * @author fangtengfei
 *
 */
public class BlackListServiceImpl {

    private static CopyOnWriteMap<String, Boolean> blackListMap = new CopyOnWriteMap<String, Boolean>(
            1000);

    public static boolean isBlackList(String id) {
        return blackListMap.get(id) == null ? false : true;
    }

    public static void addBlackList(String id) {
        blackListMap.put(id, Boolean.TRUE);
    }

    /**
     * 批量添加黑名單
     *
     * @param ids
     */
    public static void addBlackList(Map<String,Boolean> ids) {
        blackListMap.putAll(ids);
    }

}
View Code

代碼很簡單,但是使用CopyOnWriteMap需要注意兩件事情:

1. 減少擴容開銷。根據實際需要,初始化CopyOnWriteMap的大小,避免寫時CopyOnWriteMap擴容的開銷。

2. 使用批量添加。因為每次添加,容器每次都會進行復制,所以減少添加次數,可以減少容器的復制次數。如使用上面代碼里的addBlackList方法。

CopyOnWrite的缺點

CopyOnWrite容器有很多優點,但是同時也存在兩個問題,即內存占用問題和數據一致性問題。所以在開發的時候需要注意一下。

內存占用問題。因為CopyOnWrite的寫時復制機制,所以在進行寫操作的時候,內存里會同時駐扎兩個對象的內存,舊的對象和新寫入的對象(注意:在復制的時候只是復制容器里的引用,只是在寫的時候會創建新對象添加到新容器里,而舊容器的對象還在使用,所以有兩份對象內存)。如果這些對象占用的內存比較大,比如說200M左右,那么再寫入100M數據進去,內存就會占用300M,那么這個時候很有可能造成頻繁的Yong GC和Full GC。之前我們系統中使用了一個服務由於每晚使用CopyOnWrite機制更新大對象,造成了每晚15秒的Full GC,應用響應時間也隨之變長。頻繁的GC是因為修改CopyOnWriteArrayList里大量的元素造成的。兩份對象內存是指修改前和修改后兩個元素內存。

針對內存占用問題,可以通過壓縮容器中的元素的方法來減少大對象的內存消耗,比如,如果元素全是10進制的數字,可以考慮把它壓縮成36進制或64進制。或者不使用CopyOnWrite容器,而使用其他的並發容器,如ConcurrentHashMap

數據一致性問題。CopyOnWrite容器只能保證數據的最終一致性,不能保證數據的實時一致性。所以如果你希望寫入的的數據,馬上能讀到,請不要使用CopyOnWrite容器。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM