A magical string S consists of only '1' and '2' and obeys the following rules:
The string S is magical because concatenating the number of contiguous occurrences of characters '1' and '2' generates the string S itself.
The first few elements of string S is the following: S = "1221121221221121122……"
If we group the consecutive '1's and '2's in S, it will be:
1 22 11 2 1 22 1 22 11 2 11 22 ......
and the occurrences of '1's or '2's in each group are:
1 2 2 1 1 2 1 2 2 1 2 2 ......
You can see that the occurrence sequence above is the S itself.
Given an integer N as input, return the number of '1's in the first N number in the magical string S.
Note: N will not exceed 100,000.
Example 1:
Input: 6 Output: 3 Explanation: The first 6 elements of magical string S is "12211" and it contains three 1's, so return 3.
這道題介紹了一種神奇字符串,只由1和2組成,通過計數1組和2組的個數,又能生成相同的字符串。而讓我們求前n個數字中1的個數說白了其實就是讓我們按規律生成這個神奇字符串,只有生成了字符串的前n個字符,才能統計出1的個數。其實這道題的難點就是在於找到規律來生成字符串,這里我們就直接說規律了,因為博主也沒有自己找到,都是看了網上大神們的解法。根據第三個數字2開始往后生成數字,此時生成兩個1,然后根據第四個數字1,生成一個2,再根據第五個數字1,生成一個1,以此類推,生成的數字1或2可能通過異或3來交替生成,在生成的過程中同時統計1的個數即可,參見代碼如下:
解法一:
class Solution { public: int magicalString(int n) { if (n <= 0) return 0; if (n <= 3) return 1; int res = 1, head = 2, tail = 3, num = 1; vector<int> v{1, 2, 2}; while (tail < n) { for (int i = 0; i < v[head]; ++i) { v.push_back(num); if (num == 1 && tail < n) ++res; ++tail; } num ^= 3; ++head; } return res; } };
下面這種解法的思路跟上面一樣,但是寫法上面大大的簡潔了,感覺很叼!
解法二:
class Solution { public: int magicalString(int n) { string s = "122"; int i = 2; while (s.size() < n) { s += string(s[i++] - '0', s.back() ^ 3); } return count(s.begin(), s.begin() + n, '1'); } };
參考資料:
https://discuss.leetcode.com/topic/74637/short-c
https://discuss.leetcode.com/topic/74917/simple-java-solution-using-one-array-and-two-pointers