在上一文章末尾,給出了一段代碼,就涉及到descriptor與attribute lookup的問題。而get系列函數(__get__, __getattr__, __getattribute__) 也很容易搞暈,本文就這些問題簡單總結一下。
- python中一切都是對象,“everything is object”,包括類,類的實例,數字,模塊
- 任何object都是類(class or type)的實例(instance)
- 如果一個descriptor只實現了__get__方法,我們稱之為non-data descriptor, 如果同時實現了__get__ __set__我們稱之為data descriptor。
實例屬性查找
The implementation works through a precedence chain that gives data descriptors priority over instance variables, instance variables priority over non-data descriptors, and assigns lowest priority to__getattr__()
if provided.
(1)如果“attr”是出現在Clz或其基類的__dict__中, 且attr是data descriptor, 那么調用其__get__方法, 否則
(2)如果“attr”出現在obj的__dict__中, 那么直接返回 obj.__dict__['attr'], 否則
(3)如果“attr”出現在Clz或其基類的__dict__中
(3.1)如果attr是non-data descriptor,那么調用其__get__方法, 否則
(3.2)返回 __dict__['attr']
(4)如果Clz有__getattr__方法,調用__getattr__方法,否則
(5)拋出AttributeError

1 #coding=utf-8 2 class DataDescriptor(object): 3 def __init__(self, init_value): 4 self.value = init_value 5 6 def __get__(self, instance, typ): 7 return 'DataDescriptor __get__' 8 9 def __set__(self, instance, value): 10 print ('DataDescriptor __set__') 11 self.value = value 12 13 class NonDataDescriptor(object): 14 def __init__(self, init_value): 15 self.value = init_value 16 17 def __get__(self, instance, typ): 18 return('NonDataDescriptor __get__') 19 20 class Base(object): 21 dd_base = DataDescriptor(0) 22 ndd_base = NonDataDescriptor(0) 23 24 25 class Derive(Base): 26 dd_derive = DataDescriptor(0) 27 ndd_derive = NonDataDescriptor(0) 28 same_name_attr = 'attr in class' 29 30 def __init__(self): 31 self.not_des_attr = 'I am not descriptor attr' 32 self.same_name_attr = 'attr in object' 33 34 def __getattr__(self, key): 35 return '__getattr__ with key %s' % key 36 37 def change_attr(self): 38 self.__dict__['dd_base'] = 'dd_base now in object dict ' 39 self.__dict__['ndd_derive'] = 'ndd_derive now in object dict ' 40 41 def main(): 42 b = Base() 43 d = Derive() 44 print 'Derive object dict', d.__dict__ 45 assert d.dd_base == "DataDescriptor __get__" 46 assert d.ndd_derive == 'NonDataDescriptor __get__' 47 assert d.not_des_attr == 'I am not descriptor attr' 48 assert d.no_exists_key == '__getattr__ with key no_exists_key' 49 assert d.same_name_attr == 'attr in object' 50 d.change_attr() 51 print 'Derive object dict', d.__dict__ 52 assert d.dd_base != 'dd_base now in object dict ' 53 assert d.ndd_derive == 'ndd_derive now in object dict ' 54 55 try: 56 b.no_exists_key 57 except Exception, e: 58 assert isinstance(e, AttributeError) 59 60 if __name__ == '__main__': 61 main()
Derive object dict {'same_name_attr': 'attr in object', 'not_des_attr': 'I am not descriptor attr'}Derive object dict {'same_name_attr': 'attr in object', 'ndd_derive': 'ndd_derive now in object dict ', 'not_des_attr': 'I am not descriptor attr', 'dd_base': 'dd_base now in object dict '}
調用change_attr方法之后,dd_base既出現在類的__dict__(作為data descriptor), 也出現在實例的__dict__, 因為attribute lookup的循序,所以優先返回的還是Clz.__dict__['dd_base']。而ndd_base雖然出現在類的__dict__, 但是因為是nondata descriptor,所以優先返回obj.__dict__['dd_base']。其他:line48,line56表明了__getattr__的作用。line49表明obj.__dict__優先於Clz.__dict__
cached_property例子
我們再來看看上一文章的這段代碼。
1 import functools, time
2 class cached_property(object): 3 """ A property that is only computed once per instance and then replaces 4 itself with an ordinary attribute. Deleting the attribute resets the 5 property. """ 6 7 def __init__(self, func): 8 functools.update_wrapper(self, func) 9 self.func = func 10 11 def __get__(self, obj, cls): 12 if obj is None: return self 13 value = obj.__dict__[self.func.__name__] = self.func(obj) 14 return value 15 16 class TestClz(object): 17 @cached_property 18 def complex_calc(self): 19 print 'very complex_calc' 20 return sum(range(100)) 21 22 if __name__=='__main__': 23 t = TestClz() 24 print '>>> first call' 25 print t.complex_calc 26 print '>>> second call' 27 print t.complex_calc
cached_property是一個non-data descriptor。在TestClz中,用cached_property裝飾方法complex_calc,返回值是一個descriptor實例,所以在調用的時候沒有使用小括號。
類屬性查找
前面提到過,類的也是對象,類是元類(metaclass)的實例,所以類屬性的查找順序基本同上。區別在於第二步,由於Clz可能有基類,所以是在Clz及其基類的__dict__”查找“attr,注意這里的查找並不是直接返回clz.__dict__['attr']。具體來說,這第二步分為以下兩種情況:
(2.1)如果clz.__dict__['attr']是一個descriptor(不管是data descriptor還是non-data descriptor),都調用其__get__方法
(2.2)否則返回clz.__dict__['attr']
這就解釋了一個很有意思的問題:method與function的問題
>>> class Widget(object):
... def func(self):
... pass
...
>>> w = Widget()
>>> Widget.__dict__
dict_proxy({'__dict__': <attribute '__dict__' of 'Widget' objects>, '__module__': '__main__', '__weakref__': <attribute '__weakref__' of 'Widget' objects>, '__doc__': None, 'func': <function func at 0x7fdc7d0d1668>})
>>> w.__dict__
{}
>>> Widget.__dict__['func']
<function func at 0x7fdc7d0d1668>
>>> Widget.func
<unbound method Widget.func>
>>>
Widget是一個之定義了一個func函數的類,func是類的屬性,這個也可以通過Widget.__dict__、w.__dict__看到。Widget.__dict__['func']返回的是一個function,但Widget.func是一個unbound method,即Widget.func並不等同於Widget.__dict__['func'],按照前面的類屬性的訪問順序,我們可以懷疑,func是一個descriptor,這樣才不會走到第2.2這種情況。驗證如下:
>>> dir(Widget.__dict__['func'])
['__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delattr__', '__dict__', '__doc__', '__format__', '__get__', '__getattribute__', '__globals__', '__hash__', '__init__', '__module__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'func_closure', 'func_code', 'func_defaults', 'func_dict', 'func_doc', 'func_globals', 'func_name']
屬性賦值
Python的屬性賦值(attribute assignment)也會受到descriptor(data descriptor)的影響,同時也會受到__setattr__函數的影響。當然Python中還有一個setattr,setattr(x, 'foobar', 123)等價於x.foobar = 123,二者都叫attribute assignment。
首先看看__setattr__:
object.__setattr__(self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism
那什么是normal mechanism,簡單來說就是x.__dict__['foobar'] = 123,不管'foobar'之前是否是x的屬性(當然賦值之后就一定是了)。但是如果‘’foobar‘’是類屬性,且是data descriptor,那么回優先調用__set__。我們來看一個例子:
1 class MaxValDes(object): 2 def __init__(self, attr, max_val): 3 self.attr = attr 4 self.max_val = max_val 5 6 def __get__(self, instance, typ): 7 return instance.__dict__[self.attr] 8 9 def __set__(self, instance, value): 10 instance.__dict__[self.attr] = min(self.max_val, value) 11 print 'MaxValDes __set__', self.attr, instance.__dict__[self.attr] 12 13 class Widget(object): 14 a = MaxValDes('a', 10) 15 def __init__(self): 16 self.a = 0 17 18 # def __setattr__(self, name, value): 19 # self.__dict__[name] = value 20 # print 'Widget __setattr__', name, self.__dict__[name] 21 22 if __name__ == '__main__': 23 w0 = Widget() 24 w0.a = 123
輸出如下:
MaxValDes __set__ a 0
MaxValDes __set__ a 10
可以看到,即使Widget的實例也有一個‘a’屬性,但是調用w.a的時候會調用類屬性‘a’(一個descriptor)的__set__方法。如果不注釋掉第18到第20行,輸出如下
Widget __setattr__ a 0
Widget __setattr__ a 123
可以看到,優先調用Widget 的__setattr__方法。因此:對於屬性賦值,obj = Clz(), 那么obj.attr = var,按照這樣的順序:
(1)如果Clz定義了__setattr__方法,那么調用該方法,否則
(2)如果“attr”是出現在Clz或其基類的__dict__中, 且attr是data descriptor, 那么調用其__set__方法, 否則
(3)等價調用obj.__dict__['attr'] = var