Elasticsearch 5.0 中term 查詢和match 查詢的認識


Elasticsearch 5.0 關於term querymatch query的認識

wb security

一、基本情況

前言:term query和match query牽扯的東西比較多,例如分詞器、mapping、倒排索引等。我結合官方文檔中的一個實例,談談自己對此處的理解

  • string類型在es5.*分為text和keyword。text是要被分詞的,整個字符串根據一定規則分解成一個個小寫的term,keyword類似es2.3中not_analyzed的情況。

string數據put到elasticsearch中,默認是text。

NOTE:默認分詞器為standard analyzer。"Quick Brown Fox!"會被分解成[quick,brown,fox]寫入倒排索引

  • term query會去倒排索引中尋找確切的term,它並不知道分詞器的存在。這種查詢適合keywordnumericdate
  • match query知道分詞器的存在。並且理解是如何被分詞的

總的來說有如下:

  • term query 查詢的是倒排索引中確切的term
  • match query 會對filed進行分詞操作,然后在查詢

二、測試(1)

  1. 准備數據:
POST /termtest/termtype/1
{
  "content":"Name"
}
POST /termtest/termtype/2
{
  "content":"name city"
}
  1. 查看數據是否導入
GET /termtest/_search
{
  "query":
  {
    "match_all": {}
  }
}
  • 結果:
{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1,
    "hits": [
      {
        "_index": "termtest",
        "_type": "termtype",
        "_id": "2",
        "_score": 1,
        "_source": {
          "content": "name city"
        }
      },
      {
        "_index": "termtest",
        "_type": "termtype",
        "_id": "1",
        "_score": 1,
        "_source": {
          "content": "Name"
        }
      }
    ]
  }
}

如上說明,數據已經被導入。該處字符串類型是text,也就是默認被分詞了

  1. 做如下查詢:
POST /termtest/_search
{
  "query":{
    "term":{
      "content":"Name"
    }
  }
}
  • 結果
{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": null,
    "hits": []
  }
}

分析結果:因為是默認被standard analyzer分詞器分詞,大寫字母全部轉為了小寫字母,並存入了倒排索引以供搜索。term是確切查詢,
必須要匹配到大寫的Name。所以返回結果為空

POST /termtest/_search
{
  "query":{
    "match":{
      "content":"Name"
    }
  }
}
  • 結果
{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "termtest",
        "_type": "termtype",
        "_id": "1",
        "_score": 0.2876821,
        "_source": {
          "content": "Name"
        }
      },
      {
        "_index": "termtest",
        "_type": "termtype",
        "_id": "2",
        "_score": 0.25811607,
        "_source": {
          "content": "name city"
        }
      }
    ]
  }
}

分析結果: 原因(1):默認被standard analyzer分詞器分詞,大寫字母全部轉為了小寫字母,並存入了倒排索引以供搜索,
原因(2):match query先對filed進行分詞,分詞為"name",再去匹配倒排索引中的term

三、測試(2)

下面是官網實例官網實例

  1. 導入數據
PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "full_text": {
          "type":  "text" 
        },
        "exact_value": {
          "type":  "keyword" 
        }
      }
    }
  }
}
PUT my_index/my_type/1
{
  "full_text":   "Quick Foxes!", 
  "exact_value": "Quick Foxes!"  
}

先指定類型,再導入數據

  • full_text: 指定類型為text,是會被分詞
  • exact_value: 指定類型為keyword,不會被分詞
  • full_text: 會被standard analyzer分詞為如下terms [quick,foxes],存入倒排索引
  • exact_value: 只有[Quick Foxes!]這一個term會被存入倒排索引
  1. 做如下查詢
GET my_index/my_type/_search
{
  "query": {
    "term": {
      "exact_value": "Quick Foxes!" 
    }
  }
}

結果:

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 0.2876821,
        "_source": {
          "full_text": "Quick Foxes!",
          "exact_value": "Quick Foxes!"
        }
      }
    ]
  }
}

exact_value包含了確切的Quick Foxes!,因此被查詢到

GET my_index/my_type/_search
{
  "query": {
    "term": {
      "full_text": "Quick Foxes!" 
    }
  }
}

結果:

{
  "took": 4,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": null,
    "hits": []
  }
}

full_text被分詞了,倒排索引中只有quickfoxes。沒有Quick Foxes!

GET my_index/my_type/_search
{
  "query": {
    "term": {
      "full_text": "foxes" 
    }
  }
}

結果:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.25811607,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 0.25811607,
        "_source": {
          "full_text": "Quick Foxes!",
          "exact_value": "Quick Foxes!"
        }
      }
    ]
  }
}

full_text被分詞,倒排索引中只有quickfoxes,因此查詢foxes能成功

GET my_index/my_type/_search
{
  "query": {
    "match": {
      "full_text": "Quick Foxes!" 
    }
  }
}

結果:

{
  "took": 3,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.51623213,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 0.51623213,
        "_source": {
          "full_text": "Quick Foxes!",
          "exact_value": "Quick Foxes!"
        }
      }
    ]
  }
}

match query會先對自己的query string進行分詞。也就是"Quick Foxes!"先分詞為quick和foxes。然后在去倒排索引中查詢,此處full_text是text類型,被分詞為quick和foxes
因此能匹配上。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM