1:使用redis有哪些好處?
(1) 速度快,因為數據存在內存中,類似於HashMap,HashMap的優勢就是查找和操作的時間復雜度都是O(1)
(2) 支持豐富數據類型,支持string,list,set,sorted set,hash
(3) 支持事務,操作都是原子性,所謂的原子性就是對數據的更改要么全部執行,要么全部不執行
(4) 豐富的特性:可用於緩存,消息,按key設置過期時間,過期后將會自動刪除
2:Memcache與Redis的區別都有哪些?
(1)、存儲方式
Memecache把數據全部存在內存之中,斷電后會掛掉,數據不能超過內存大小。
Redis有部份存在硬盤上,這樣能保證數據的持久性。
(2)、數據支持類型
Memcache對數據類型支持相對簡單。
Redis有復雜的數據類型。
(3)、使用底層模型不同
它們之間底層實現方式 以及與客戶端之間通信的應用協議不一樣。
Redis直接自己構建了VM 機制 ,因為一般的系統調用系統函數的話,會浪費一定的時間去移動和請求。\
3:redis常見性能問題和解決方案?
(1) Master最好不要做任何持久化工作,如RDB內存快照和AOF日志文件
(2) 如果數據比較重要,某個Slave開啟AOF備份數據,策略設置為每秒同步一次
(3) 為了主從復制的速度和連接的穩定性,Master和Slave最好在同一個局域網內
(4) 盡量避免在壓力很大的主庫上增加從庫
(5) 主從復制不要用圖狀結構,用單向鏈表結構更為穩定,即:Master <- Slave1 <- Slave2 <- Slave3...
這樣的結構方便解決單點故障問題,實現Slave對Master的替換。如果Master掛了,可以立刻啟用Slave1做Master,其他不變。
4:redis的並發競爭問題如何解決?
Redis為單進程單線程模式,采用隊列模式將並發訪問變為串行訪問。Redis本身沒有鎖的概念,Redis對於多個客戶端連接並不存在競爭,但是在Jedis客戶端對Redis進行並發訪問時會發生連接超時、數據轉換錯誤、阻塞、客戶端關閉連接等問題,這些問題均是由於客戶端連接混亂造成。對此有2種解決方法:
1.客戶端角度,為保證每個客戶端間正常有序與Redis進行通信,對連接進行池化,同時對客戶端讀寫Redis操作采用內部鎖synchronized。
2.服務器角度,利用setnx實現鎖。
對於第一種,需要應用程序自己處理資源的同步,可以使用的方法比較通俗,可以使用synchronized也可以使用lock;第二種需要用到Redis的setnx命令,但是需要注意一些問題。
5:redis事物的了解CAS(check-and-set 操作實現樂觀鎖)?
和眾多其它數據庫一樣,Redis作為NoSQL數據庫也同樣提供了事務機制。在Redis中,MULTI/EXEC/DISCARD/WATCH這四個命令是我們實現事務的基石。相信對有關系型數據庫開發經驗的開發者而言這一概念並不陌生,即便如此,我們還是會簡要的列出Redis中事務的實現特征:
1). 在事務中的所有命令都將會被串行化的順序執行,事務執行期間,Redis不會再為其它客戶端的請求提供任何服務,從而保證了事物中的所有命令被原子的執行。
2). 和關系型數據庫中的事務相比,在Redis事務中如果有某一條命令執行失敗,其后的命令仍然會被繼續執行。
3). 我們可以通過MULTI命令開啟一個事務,有關系型數據庫開發經驗的人可以將其理解為"BEGIN TRANSACTION"語句。在該語句之后執行的命令都將被視為事務之內的操作,最后我們可以通過執行EXEC/DISCARD命令來提交/回滾該事務內的所有操作。這兩個Redis命令可被視為等同於關系型數據庫中的COMMIT/ROLLBACK語句。
4). 在事務開啟之前,如果客戶端與服務器之間出現通訊故障並導致網絡斷開,其后所有待執行的語句都將不會被服務器執行。然而如果網絡中斷事件是發生在客戶端執行EXEC命令之后,那么該事務中的所有命令都會被服務器執行。
5). 當使用Append-Only模式時,Redis會通過調用系統函數write將該事務內的所有寫操作在本次調用中全部寫入磁盤。然而如果在寫入的過程中出現系統崩潰,如電源故障導致的宕機,那么此時也許只有部分數據被寫入到磁盤,而另外一部分數據卻已經丟失。Redis服務器會在重新啟動時執行一系列必要的一致性檢測,一旦發現類似問題,就會立即退出並給出相應的錯誤提示。此時,我們就要充分利用Redis工具包中提供的redis-check-aof工具,該工具可以幫助我們定位到數據不一致的錯誤,並將已經寫入的部分數據進行回滾。修復之后我們就可以再次重新啟動Redis服務器了。
6、WATCH命令和基於CAS的樂觀鎖:
在Redis的事務中,WATCH命令可用於提供CAS(check-and-set)功能。假設我們通過WATCH命令在事務執行之前監控了多個Keys,倘若在WATCH之后有任何Key的值發生了變化,EXEC命令執行的事務都將被放棄,同時返回Null multi-bulk應答以通知調用者事務執行失敗。例如,我們再次假設Redis中並未提供incr命令來完成鍵值的原子性遞增,如果要實現該功能,我們只能自行編寫相應的代碼。其偽碼如下:
val = GET mykey
val = val + 1
SET mykey $val
以上代碼只有在單連接的情況下才可以保證執行結果是正確的,因為如果在同一時刻有多個客戶端在同時執行該段代碼,那么就會出現多線程程序中經常出現的一種錯誤場景--競態爭用(race condition)。比如,客戶端A和B都在同一時刻讀取了mykey的原有值,假設該值為10,此后兩個客戶端又均將該值加一后set回Redis服務器,這樣就會導致mykey的結果為11,而不是我們認為的12。為了解決類似的問題,我們需要借助WATCH命令的幫助,見如下代碼:
WATCH mykey
val = GET mykey
val = val + 1
MULTI
SET mykey $val
EXEC
和此前代碼不同的是,新代碼在獲取mykey的值之前先通過WATCH命令監控了該鍵,此后又將set命令包圍在事務中,這樣就可以有效的保證每個連接在執行EXEC之前,如果當前連接獲取的mykey的值被其它連接的客戶端修改,那么當前連接的EXEC命令將執行失敗。這樣調用者在判斷返回值后就可以獲悉val是否被重新設置成功。
7、redis持久化的幾種方式
1、快照(snapshots)
缺省情況情況下,Redis把數據快照存放在磁盤上的二進制文件中,文件名為dump.rdb。你可以配置Redis的持久化策略,例如數據集中每N秒鍾有超過M次更新,就將數據寫入磁盤;或者你可以手工調用命令SAVE或BGSAVE。
工作原理
- Redis forks.
- 子進程開始將數據寫到臨時RDB文件中。
- 當子進程完成寫RDB文件,用新文件替換老文件。
- 這種方式可以使Redis使用copy-on-write技術。
2、AOF
快照模式並不十分健壯,當系統停止,或者無意中Redis被kill掉,最后寫入Redis的數據就會丟失。這對某些應用也許不是大問題,但對於要求高可靠性的應用來說,
Redis就不是一個合適的選擇。
Append-only文件模式是另一種選擇。
你可以在配置文件中打開AOF模式
3、虛擬內存方式
4、diskstore方式
8、redis的緩存失效策略和主鍵失效機制
作為緩存系統都要定期清理無效數據,就需要一個主鍵失效和淘汰策略.
在Redis當中,有生存期的key被稱為volatile。在創建緩存時,要為給定的key設置生存期,當key過期的時候(生存期為0),它可能會被刪除。
1、影響生存時間的一些操作
生存時間可以通過使用 DEL 命令來刪除整個 key 來移除,或者被 SET 和 GETSET 命令覆蓋原來的數據,也就是說,修改key對應的value和使用另外相同的key和value來覆蓋以后,當前數據的生存時間不同。
比如說,對一個 key 執行INCR命令,對一個列表進行LPUSH命令,或者對一個哈希表執行HSET命令,這類操作都不會修改 key 本身的生存時間。另一方面,如果使用RENAME對一個 key 進行改名,那么改名后的 key 的生存時間和改名前一樣。
RENAME命令的另一種可能是,嘗試將一個帶生存時間的 key 改名成另一個帶生存時間的 another_key ,這時舊的 another_key (以及它的生存時間)會被刪除,然后舊的 key 會改名為 another_key ,因此,新的 another_key 的生存時間也和原本的 key 一樣。使用PERSIST命令可以在不刪除 key 的情況下,移除 key 的生存時間,讓 key 重新成為一個persistent key 。
2、如何更新生存時間
可以對一個已經帶有生存時間的 key 執行EXPIRE命令,新指定的生存時間會取代舊的生存時間。過期時間的精度已經被控制在1ms之內,主鍵失效的時間復雜度是O(1),
EXPIRE和TTL命令搭配使用,TTL可以查看key的當前生存時間。設置成功返回 1;當 key 不存在或者不能為 key 設置生存時間時,返回 0 。
最大緩存配置
在 redis 中,允許用戶設置最大使用內存大小
1
|
server.maxmemory
|
默認為0,沒有指定最大緩存,如果有新的數據添加,超過最大內存,則會使redis崩潰,所以一定要設置。redis 內存數據集大小上升到一定大小的時候,就會實行數據淘汰策略。
redis 提供 6種數據淘汰策略:
- volatile-lru:從已設置過期時間的數據集(server.db[i].expires)中挑選最近最少使用的數據淘汰
- volatile-ttl:從已設置過期時間的數據集(server.db[i].expires)中挑選將要過期的數據淘汰
- volatile-random:從已設置過期時間的數據集(server.db[i].expires)中任意選擇數據淘汰
- allkeys-lru:從數據集(server.db[i].dict)中挑選最近最少使用的數據淘汰
- allkeys-random:從數據集(server.db[i].dict)中任意選擇數據淘汰
- no-enviction(驅逐):禁止驅逐數據
注意這里的6種機制,volatile和allkeys規定了是對已設置過期時間的數據集淘汰數據還是從全部數據集淘汰數據,后面的lru、ttl以及random是三種不同的淘汰策略,再加上一種no-enviction永不回收的策略。
使用策略規則:
1、如果數據呈現冪律分布,也就是一部分數據訪問頻率高,一部分數據訪問頻率低,則使用allkeys-lru
2、如果數據呈現平等分布,也就是所有的數據訪問頻率都相同,則使用allkeys-random
三種數據淘汰策略:
ttl和random比較容易理解,實現也會比較簡單。主要是Lru最近最少使用淘汰策略,設計上會對key 按失效時間排序,然后取最先失效的key進行淘汰