代碼與圖詳解性能之Python集合類型(list tuple dict set generator)


Python內嵌的集合類型有list、tuple、set、dict。
列表list:看似數組,但比數組強大,支持索引、切片、查找、增加等功能。
元組tuple:功能跟list差不多,但一旦生成,長度及元素都不可變(元素的元素還是可變),似乎就是一更輕量級、安全的list。
字典dict:鍵值對結構哈希表,跟哈希表的性質一樣,key無序且不重復,增刪改方便快捷。
set:無序且不重復的集合,就是一個只有鍵沒有值的dict,Java的HashSet就是采用HashMap實現,但願python不會是這樣,畢竟set不需要value,省去了很多指針。
 
稱之為生成器,或者列表推導式,是python中有一個特殊的數據類型,實際上並不是一個數據結構,只包括算法和暫存的狀態,並且具有迭代的功能。
 
先看看它們的內存使用情況,分別用生成器生成100000個元素的set, dict, generator, tuple, list。消耗的內存dict, set, list, tuple依次減少,生成的對象大小也是一樣。由於generator並不生成數據表,所以不需要消耗內存:
import sys
from memory_profiler import profile

@profile
def create_data(data_size):
    data_generator = (x for x in xrange(data_size))
    data_set = {x for x in xrange(data_size)}
    data_dict = {x:None for x in xrange(data_size)}
    data_tuple = tuple(x for x in xrange(data_size))
    data_list = [x for x in xrange(data_size)]
    return data_set, data_dict, data_generator, data_tuple, data_list

data_size = 100000
for data in create_data(data_size):
    print data.__class__, sys.getsizeof(data)

Line #    Mem usage    Increment   Line Contents
================================================
     4     14.6 MiB      0.0 MiB   @profile
     5                             def create_data(data_size):
     6     14.7 MiB      0.0 MiB       data_generator = (x for x in xrange(data_size))
     7     21.4 MiB      6.7 MiB       data_set = {x for x in xrange(data_size)}
     8     29.8 MiB      8.5 MiB       data_dict = {x:None for x in xrange(data_size)}
     9     33.4 MiB      3.6 MiB       data_tuple = tuple(x for x in xrange(data_size))
    10     38.2 MiB      4.8 MiB       data_list = [x for x in xrange(data_size)]
    11     38.2 MiB      0.0 MiB       return data_set, data_dict, data_generator, data_tuple, data_list
 
<type 'set'> 4194528
<type 'dict'> 6291728
<type 'generator'> 72
<type 'tuple'> 800048
<type 'list'> 824464

 

再看看查找性能,dict,set是常數查找時間(O(1)),list、tuple是線性查找時間(O(n)),用生成器生成指定大小元素的對象,用隨機生成的數字去查找:

import time
import sys
import random
from memory_profiler import profile

def create_data(data_size):
    data_set = {x for x in xrange(data_size)}
    data_dict = {x:None for x in xrange(data_size)}
    data_tuple = tuple(x for x in xrange(data_size))
    data_list = [x for x in xrange(data_size)]
    return data_set, data_dict, data_tuple, data_list

def cost_time(func):
    def cost(*args, **kwargs):
        start = time.time()
        r = func(*args, **kwargs)
        cost = time.time() - start
        print 'find in %s cost time %s' % (r, cost)
        return r, cost  #返回數據的類型和方法執行消耗的時間
    return cost

@cost_time
def test_find(test_data, data):
    for d in test_data:
        if d in data:
            pass
    return data.__class__.__name__

data_size = 100
test_size = 10000000
test_data = [random.randint(0, data_size) for x in xrange(test_size)]
#print test_data
for data in create_data(data_size):
    test_find(test_data, data)

輸出:
----------------------------------------------
find in <type 'set'> cost time 0.47200012207
find in <type 'dict'> cost time 0.429999828339
find in <type 'tuple'> cost time 5.36500000954
find in <type 'list'> cost time 5.53399991989
100個元素的大小的集合,分別查找1000W次,差距非常明顯。不過這些隨機數,都是能在集合中查找得到。修改一下隨機數方式,生成一半是能查找得到,一半是查找不到的。從打印信息可以看出在有一半最壞查找例子的情況下,list、tuple表現得更差了。
def randint(index, data_size):
    return random.randint(0, data_size) if (x % 2) == 0 else random.randint(data_size, data_size * 2)

test_data = [randint(x, data_size) for x in xrange(test_size)]

輸出:
----------------------------------------------
find in <type 'set'> cost time 0.450000047684
find in <type 'dict'> cost time 0.397000074387
find in <type 'tuple'> cost time 7.83299994469
find in <type 'list'> cost time 8.27800011635

元素的個數從10增長至500,統計每次查找10W次的時間,用圖擬合時間消耗的曲線,結果如下圖,結果證明dict, set不管元素多少,一直都是常數查找時間,dict、tuple隨着元素增長,呈現線性增長時間:

import matplotlib.pyplot as plot
from numpy import *

data_size = array([x for x in xrange(10, 500, 10)])
test_size = 100000
cost_result = {}
for size in data_size:
    test_data = [randint(x, size) for x in xrange(test_size)]
    for data in create_data(size):
        name, cost = test_find(test_data, data) #裝飾器函數返回函數的執行時間
        cost_result.setdefault(name, []).append(cost)

plot.figure(figsize=(10, 6))
xline = data_size
for data_type, result in cost_result.items():
    yline = array(result)
    plot.plot(xline, yline, label=data_type)

plot.ylabel('Time spend')
plot.xlabel('Find times')

plot.grid()

plot.legend()
plot.show()

迭代的時間,區別很微弱,dict、set要略微消耗時間多一點:

@cost_time
def test_iter(data):
    for d in data:
        pass
    return data.__class__ .__name__

data_size = array([x for x in xrange(1, 500000, 1000)])
cost_result = {}
for size in data_size:
    for data in create_data(size):
        name, cost = test_iter(data)
        cost_result.setdefault(name, []).append(cost)

#擬合曲線圖
plot.figure(figsize=(10, 6))
xline = data_size
for data_type, result in cost_result.items():
    yline = array(result)
    plot.plot(xline, yline, label=data_type)  

plot.ylabel('Time spend')
plot.xlabel('Iter times')

plot.grid()

plot.legend()
plot.show()

刪除元素消耗時間圖示如下,隨機刪除1000個元素,tuple類型不能刪除元素,所以不做比較:

@cost_time
def test_delete(test_data, data):
    for d in test_data:
        data.remove(d)
    return data.__class__.__name__

@cost_time
def test_dict_delete(test_data, data):
    for d in test_data:
        del data[d]
    return data.__class__.__name__

def create_data(data_size):
    data_set = {x for x in xrange(data_size)}
    data_dict = {x:None for x in xrange(data_size)}
    data_list = [x for x in xrange(data_size)]
    return data_set, data_dict, data_list

#創建隨機刪除數據集
def create_random_test_data(size, range_size):
    test_data = set()
    while(len(test_data) < size):
        test_data.add(random.randint(0, range_size))
    return test_data

#dict沒有remove方法,用del dict[key]來刪除數據,其他數據類型使用remove方法
delete_method = {list: test_delete, set: test_delete, dict: test_dict_delete}

#每次檢測1000增量大小的數據的刪除一半時間
data_size = array([x for x in xrange(1000, 20000, 1000)])
cost_result = {}
test_size = 1000
for size in data_size:
    test_data = create_random_test_data(test_size, size)
    for data in create_data(size):
        name, cost = delete_method[type(data)](test_data, data) #返回數據類型的名字和方法的執行時間
        cost_result.setdefault(name, []).append(cost)

隨機刪除一半的元素,圖形就呈指數時間(O(n2))增長了:

添加元素消耗的時間圖示如下,統計以10000為增量大小的元素個數的添加時間,都是線性增長時間,看不出有什么差別,tuple類型不能添加新的元素,所以不做比較:
@cost_time
def test_dict_add(test_data, data):
    for d in test_data:
        data[d] = None
    return data.__class__ .__name__

@cost_time
def test_set_add(test_data, data):
    for d in test_data:
        data.add(d)
    return data.__class__ .__name__

@cost_time
def test_list_add(test_data, data):
    for d in test_data:
        data.append(d)
    return data.__class__ .__name__

#初始化數據,指定每種類型對應它添加元素的方法
def init_data():
    test_data = {
        'list': (list(), test_list_add),
        'set': (set(), test_set_add),
        'dict': (dict(), test_dict_add)
    }
    return test_data

#每次檢測10000增量大小的數據的添加時間
data_size = array([x for x in xrange(10000, 1000000, 10000)])
cost_result = {}
for size in data_size:
    test_data = [x for x in xrange(size)]
    for data_type, (data, add) in init_data().items():
        name, cost = add(test_data, data) #返回方法的執行時間
        cost_result.setdefault(data_type, []).append(cost)

plot.figure(figsize=(10, 6))
xline = data_size
for data_type, result in cost_result.items():
    yline = array(result)
    plot.plot(xline, yline, label=data_type)

plot.ylabel('Time spend')
plot.xlabel('Add times')

plot.grid()

plot.legend()
plot.show()


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM