LSTM的推導與實現
前言
最近在看CS224d,這里主要介紹LSTM(Long Short-Term Memory)的推導過程以及用Python進行簡單的實現。LSTM是一種時間遞歸神經網絡,是RNN的一個變種,非常適合處理和預測時間序列中間隔和延遲非常長的事件。假設我們去試着預測‘I grew up in France...(很長間隔)...I speak fluent French’最后的單詞,當前的信息建議下一個此可能是一種語言的名字(因為speak嘛),但是要准確預測出‘French’我們就需要前面的離當前位置較遠的‘France’作為上下文,當這個間隔比較大的時候RNN就會難以處理,而LSTM則沒有這個問題。
LSTM的原理
為了弄明白LSTM的實現,我下載了alex的原文,但是被論文上圖片和公式弄的暈頭轉向,無奈最后在網上收集了一些資料才總算弄明白。我這里不介紹就LSTM的前置RNN了,不懂的童鞋自己了解一下吧。
LSTM的前向過程
首先看一張LSTM節點的內部示意圖:
圖片來自一篇講解LSTM的blog(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
這是我認為網上畫的最好的LSTM網絡節點圖(比論文里面畫的容易理解多了),LSTM前向過程就是看圖說話,關鍵的函數節點已經在圖中標出,這里我們忽略了其中一個tanh計算過程。
這里\(\phi(x)=tanh(x),\sigma(x)=\frac{1}{1+e^{-x}}\),\(x(t),h(t)\)分別是我們的輸入序列和輸出序列。如果我們把\(x(t)\)與\(h(t-1)\)這兩個向量進行合並:
那么可以上面的方程組可以重寫為:
其中\(f(t)\)被稱為忘記門,所表達的含義是決定我們會從以前狀態中丟棄什么信息。\(i(t),g(t)\)構成了輸入門,決定什么樣的新信息被存放在細胞狀態中。\(o(t)\)所在位置被稱作輸出門,決定我們要輸出什么值。這里表述的不是很准確,感興趣的讀者可以去http://colah.github.io/posts/2015-08-Understanding-LSTMs/ NLP這塊我也不太懂。
前向過程的代碼如下:
def bottom_data_is(self, x, s_prev = None, h_prev = None):
# if this is the first lstm node in the network
if s_prev == None: s_prev = np.zeros_like(self.state.s)
if h_prev == None: h_prev = np.zeros_like(self.state.h)
# save data for use in backprop
self.s_prev = s_prev
self.h_prev = h_prev
# concatenate x(t) and h(t-1)
xc = np.hstack((x, h_prev))
self.state.g = np.tanh(np.dot(self.param.wg, xc) + self.param.bg)
self.state.i = sigmoid(np.dot(self.param.wi, xc) + self.param.bi)
self.state.f = sigmoid(np.dot(self.param.wf, xc) + self.param.bf)
self.state.o = sigmoid(np.dot(self.param.wo, xc) + self.param.bo)
self.state.s = self.state.g * self.state.i + s_prev * self.state.f
self.state.h = self.state.s * self.state.o
self.x = x
self.xc = xc
LSTM的反向過程
LSTM的正向過程比較容易,反向過程則比較復雜,我們先定義一個loss function \(l(t)=f(h(t),y(t)))=||h(t)-y(t)||^2\),\(h(t),y(t)\)分別為輸出序列與樣本標簽,我們要做的就是最小化整個時間序列上的\(l(t)\),即最小化
其中\(T\)代表整個時間序列,下面我們通過\(L\)來計算梯度,假設我們要計算\(\frac{dL}{dw}\),其中\(w\)是一個標量(例如是矩陣\(W_{gx}\)的一個元素),由鏈式法則可以導出
其中\(h_i(t)\)是第i個單元的輸出,\(M\)是LSTM單元的個數,網絡隨着時間t前向傳播,\(h_i(t)\)的改變不影響t時刻之前的loss,我們可以寫出:
為了書寫方便我們令\(L(t)=\sum_{s=t}^{T}l(s)\)來簡化我們的書寫,這樣\(L(1)\)就是整個序列的loss,重寫上式有:
這樣我們就可以將梯度重寫為:
我們知道\(L(t)=l(t)+L(t+1)\),那么\(\frac{dL(t)}{dh_i(t)}=\frac{dl(t)}{dh_i(t)} + \frac{dL(t+1)}{dh_i(t)}\),這說明得到下一時序的導數后可以直接得出當前時序的導數,所以我們可以計算\(T\)時刻的導數然后往前推,在\(T\)時刻有\(\frac{dL(T)}{dh_i(T)}=\frac{dl(T)}{dh_i(T)}\)。
def y_list_is(self, y_list, loss_layer):
"""
Updates diffs by setting target sequence
with corresponding loss layer.
Will *NOT* update parameters. To update parameters,
call self.lstm_param.apply_diff()
"""
assert len(y_list) == len(self.x_list)
idx = len(self.x_list) - 1
# first node only gets diffs from label ...
loss = loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx])
diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx])
# here s is not affecting loss due to h(t+1), hence we set equal to zero
diff_s = np.zeros(self.lstm_param.mem_cell_ct)
self.lstm_node_list[idx].top_diff_is(diff_h, diff_s)
idx -= 1
### ... following nodes also get diffs from next nodes, hence we add diffs to diff_h
### we also propagate error along constant error carousel using diff_s
while idx >= 0:
loss += loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx])
diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx])
diff_h += self.lstm_node_list[idx + 1].state.bottom_diff_h
diff_s = self.lstm_node_list[idx + 1].state.bottom_diff_s
self.lstm_node_list[idx].top_diff_is(diff_h, diff_s)
idx -= 1
return loss
從上面公式可以很容易理解diff_h的計算過程。這里的loss_layer.bottom_diff定義如下:
def bottom_diff(self, pred, label):
diff = np.zeros_like(pred)
diff[0] = 2 * (pred[0] - label)
return diff
該函數結合上文的loss function很明顯。下面來推導\(\frac{dL(t)}{ds(t)}\),結合前面的前向公式我們可以很容易得出\(s(t)\)的變化會直接影響\(h(t)\)和\(h(t+1)\),進而影響\(L(t)\),即有:
因為\(h(t+1)\)不影響\(l(t)\)所以有\(\frac{dL(t)}{dh_i(t+1)}=\frac{dL(t+1)}{dh_i(t+1)}\),因此有:
同樣的我們可以通過后面的導數逐級反推得到前面的導數,代碼即diff_s的計算過程。
下面我們計算\(\frac{dL(t)}{dh_i(t)}*\frac{dh_i(t)}{ds_i(t)}\),因為\(h(t)=s(t)*o(t)\),那么\(\frac{dL(t)}{dh_i(t)}*\frac{dh_i(t)}{ds_i(t)}=\frac{dL(t)}{dh_i(t)}*o_i(t)=o_i(t)[diff\_h]\),即\(\frac{dL(t)}{ds_i(t)}=o(t)[diff\_h]_i+[diff\_s]_i\),其中\([diff\_h]_i,[diff\_s]_i\)分別表述當前t時序的\(\frac{dL(t)}{dh_i(t)}\)和t+1時序的\(\frac{dL(t)}{ds_i(t)}\)。同樣的,結合上面的代碼應該比較容易理解。
下面我們根據前向過程挨個計算導數:
因此有以下代碼:
def top_diff_is(self, top_diff_h, top_diff_s):
# notice that top_diff_s is carried along the constant error carousel
ds = self.state.o * top_diff_h + top_diff_s
do = self.state.s * top_diff_h
di = self.state.g * ds
dg = self.state.i * ds
df = self.s_prev * ds
# diffs w.r.t. vector inside sigma / tanh function
di_input = (1. - self.state.i) * self.state.i * di #sigmoid diff
df_input = (1. - self.state.f) * self.state.f * df
do_input = (1. - self.state.o) * self.state.o * do
dg_input = (1. - self.state.g ** 2) * dg #tanh diff
# diffs w.r.t. inputs
self.param.wi_diff += np.outer(di_input, self.xc)
self.param.wf_diff += np.outer(df_input, self.xc)
self.param.wo_diff += np.outer(do_input, self.xc)
self.param.wg_diff += np.outer(dg_input, self.xc)
self.param.bi_diff += di_input
self.param.bf_diff += df_input
self.param.bo_diff += do_input
self.param.bg_diff += dg_input
# compute bottom diff
dxc = np.zeros_like(self.xc)
dxc += np.dot(self.param.wi.T, di_input)
dxc += np.dot(self.param.wf.T, df_input)
dxc += np.dot(self.param.wo.T, do_input)
dxc += np.dot(self.param.wg.T, dg_input)
# save bottom diffs
self.state.bottom_diff_s = ds * self.state.f
self.state.bottom_diff_x = dxc[:self.param.x_dim]
self.state.bottom_diff_h = dxc[self.param.x_dim:]
這里top_diff_h,top_diff_s分別是上文的diff_h,diff_s。這里我們講解下wi_diff的求解過程,其他變量類似。
上式化簡之后即得到以下代碼
wi_diff += np.outer((1.-i)*i*di, xc)
其它的導數可以同樣得到,這里就不贅述了。
LSTM完整例子
#lstm在輸入一串連續質數時預估下一個質數
import random
import numpy as np
import math
def sigmoid(x):
return 1. / (1 + np.exp(-x))
# createst uniform random array w/ values in [a,b) and shape args
def rand_arr(a, b, *args):
np.random.seed(0)
return np.random.rand(*args) * (b - a) + a
class LstmParam:
def __init__(self, mem_cell_ct, x_dim):
self.mem_cell_ct = mem_cell_ct
self.x_dim = x_dim
concat_len = x_dim + mem_cell_ct
# weight matrices
self.wg = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
self.wi = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
self.wf = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
self.wo = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
# bias terms
self.bg = rand_arr(-0.1, 0.1, mem_cell_ct)
self.bi = rand_arr(-0.1, 0.1, mem_cell_ct)
self.bf = rand_arr(-0.1, 0.1, mem_cell_ct)
self.bo = rand_arr(-0.1, 0.1, mem_cell_ct)
# diffs (derivative of loss function w.r.t. all parameters)
self.wg_diff = np.zeros((mem_cell_ct, concat_len))
self.wi_diff = np.zeros((mem_cell_ct, concat_len))
self.wf_diff = np.zeros((mem_cell_ct, concat_len))
self.wo_diff = np.zeros((mem_cell_ct, concat_len))
self.bg_diff = np.zeros(mem_cell_ct)
self.bi_diff = np.zeros(mem_cell_ct)
self.bf_diff = np.zeros(mem_cell_ct)
self.bo_diff = np.zeros(mem_cell_ct)
def apply_diff(self, lr = 1):
self.wg -= lr * self.wg_diff
self.wi -= lr * self.wi_diff
self.wf -= lr * self.wf_diff
self.wo -= lr * self.wo_diff
self.bg -= lr * self.bg_diff
self.bi -= lr * self.bi_diff
self.bf -= lr * self.bf_diff
self.bo -= lr * self.bo_diff
# reset diffs to zero
self.wg_diff = np.zeros_like(self.wg)
self.wi_diff = np.zeros_like(self.wi)
self.wf_diff = np.zeros_like(self.wf)
self.wo_diff = np.zeros_like(self.wo)
self.bg_diff = np.zeros_like(self.bg)
self.bi_diff = np.zeros_like(self.bi)
self.bf_diff = np.zeros_like(self.bf)
self.bo_diff = np.zeros_like(self.bo)
class LstmState:
def __init__(self, mem_cell_ct, x_dim):
self.g = np.zeros(mem_cell_ct)
self.i = np.zeros(mem_cell_ct)
self.f = np.zeros(mem_cell_ct)
self.o = np.zeros(mem_cell_ct)
self.s = np.zeros(mem_cell_ct)
self.h = np.zeros(mem_cell_ct)
self.bottom_diff_h = np.zeros_like(self.h)
self.bottom_diff_s = np.zeros_like(self.s)
self.bottom_diff_x = np.zeros(x_dim)
class LstmNode:
def __init__(self, lstm_param, lstm_state):
# store reference to parameters and to activations
self.state = lstm_state
self.param = lstm_param
# non-recurrent input to node
self.x = None
# non-recurrent input concatenated with recurrent input
self.xc = None
def bottom_data_is(self, x, s_prev = None, h_prev = None):
# if this is the first lstm node in the network
if s_prev == None: s_prev = np.zeros_like(self.state.s)
if h_prev == None: h_prev = np.zeros_like(self.state.h)
# save data for use in backprop
self.s_prev = s_prev
self.h_prev = h_prev
# concatenate x(t) and h(t-1)
xc = np.hstack((x, h_prev))
self.state.g = np.tanh(np.dot(self.param.wg, xc) + self.param.bg)
self.state.i = sigmoid(np.dot(self.param.wi, xc) + self.param.bi)
self.state.f = sigmoid(np.dot(self.param.wf, xc) + self.param.bf)
self.state.o = sigmoid(np.dot(self.param.wo, xc) + self.param.bo)
self.state.s = self.state.g * self.state.i + s_prev * self.state.f
self.state.h = self.state.s * self.state.o
self.x = x
self.xc = xc
def top_diff_is(self, top_diff_h, top_diff_s):
# notice that top_diff_s is carried along the constant error carousel
ds = self.state.o * top_diff_h + top_diff_s
do = self.state.s * top_diff_h
di = self.state.g * ds
dg = self.state.i * ds
df = self.s_prev * ds
# diffs w.r.t. vector inside sigma / tanh function
di_input = (1. - self.state.i) * self.state.i * di
df_input = (1. - self.state.f) * self.state.f * df
do_input = (1. - self.state.o) * self.state.o * do
dg_input = (1. - self.state.g ** 2) * dg
# diffs w.r.t. inputs
self.param.wi_diff += np.outer(di_input, self.xc)
self.param.wf_diff += np.outer(df_input, self.xc)
self.param.wo_diff += np.outer(do_input, self.xc)
self.param.wg_diff += np.outer(dg_input, self.xc)
self.param.bi_diff += di_input
self.param.bf_diff += df_input
self.param.bo_diff += do_input
self.param.bg_diff += dg_input
# compute bottom diff
dxc = np.zeros_like(self.xc)
dxc += np.dot(self.param.wi.T, di_input)
dxc += np.dot(self.param.wf.T, df_input)
dxc += np.dot(self.param.wo.T, do_input)
dxc += np.dot(self.param.wg.T, dg_input)
# save bottom diffs
self.state.bottom_diff_s = ds * self.state.f
self.state.bottom_diff_x = dxc[:self.param.x_dim]
self.state.bottom_diff_h = dxc[self.param.x_dim:]
class LstmNetwork():
def __init__(self, lstm_param):
self.lstm_param = lstm_param
self.lstm_node_list = []
# input sequence
self.x_list = []
def y_list_is(self, y_list, loss_layer):
"""
Updates diffs by setting target sequence
with corresponding loss layer.
Will *NOT* update parameters. To update parameters,
call self.lstm_param.apply_diff()
"""
assert len(y_list) == len(self.x_list)
idx = len(self.x_list) - 1
# first node only gets diffs from label ...
loss = loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx])
diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx])
# here s is not affecting loss due to h(t+1), hence we set equal to zero
diff_s = np.zeros(self.lstm_param.mem_cell_ct)
self.lstm_node_list[idx].top_diff_is(diff_h, diff_s)
idx -= 1
### ... following nodes also get diffs from next nodes, hence we add diffs to diff_h
### we also propagate error along constant error carousel using diff_s
while idx >= 0:
loss += loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx])
diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx])
diff_h += self.lstm_node_list[idx + 1].state.bottom_diff_h
diff_s = self.lstm_node_list[idx + 1].state.bottom_diff_s
self.lstm_node_list[idx].top_diff_is(diff_h, diff_s)
idx -= 1
return loss
def x_list_clear(self):
self.x_list = []
def x_list_add(self, x):
self.x_list.append(x)
if len(self.x_list) > len(self.lstm_node_list):
# need to add new lstm node, create new state mem
lstm_state = LstmState(self.lstm_param.mem_cell_ct, self.lstm_param.x_dim)
self.lstm_node_list.append(LstmNode(self.lstm_param, lstm_state))
# get index of most recent x input
idx = len(self.x_list) - 1
if idx == 0:
# no recurrent inputs yet
self.lstm_node_list[idx].bottom_data_is(x)
else:
s_prev = self.lstm_node_list[idx - 1].state.s
h_prev = self.lstm_node_list[idx - 1].state.h
self.lstm_node_list[idx].bottom_data_is(x, s_prev, h_prev)
測試代碼
import numpy as np
from lstm import LstmParam, LstmNetwork
class ToyLossLayer:
"""
Computes square loss with first element of hidden layer array.
"""
@classmethod
def loss(self, pred, label):
return (pred[0] - label) ** 2
@classmethod
def bottom_diff(self, pred, label):
diff = np.zeros_like(pred)
diff[0] = 2 * (pred[0] - label)
return diff
def example_0():
# learns to repeat simple sequence from random inputs
np.random.seed(0)
# parameters for input data dimension and lstm cell count
mem_cell_ct = 100
x_dim = 50
concat_len = x_dim + mem_cell_ct
lstm_param = LstmParam(mem_cell_ct, x_dim)
lstm_net = LstmNetwork(lstm_param)
y_list = [-0.5,0.2,0.1, -0.5]
input_val_arr = [np.random.random(x_dim) for _ in y_list]
for cur_iter in range(100):
print "cur iter: ", cur_iter
for ind in range(len(y_list)):
lstm_net.x_list_add(input_val_arr[ind])
print "y_pred[%d] : %f" % (ind, lstm_net.lstm_node_list[ind].state.h[0])
loss = lstm_net.y_list_is(y_list, ToyLossLayer)
print "loss: ", loss
lstm_param.apply_diff(lr=0.1)
lstm_net.x_list_clear()
if __name__ == "__main__":
example_0()
參考
略