r-cnn學習(六):RPN及AnchorTargetLayer學習


    RPN網絡是faster與fast的主要區別,輸入特征圖,輸出region proposals以及相應的分數。

  

# --------------------------------------------------------  # Faster R-CNN  # Copyright (c) 2015 Microsoft  # Licensed under The MIT License [see LICENSE for details]  # Written by Ross Girshick and Sean Bell  # -------------------------------------------------------- 
  
import os import caffe import yaml from fast_rcnn.config import cfg import numpy as np import numpy.random as npr from generate_anchors import generate_anchors from utils.cython_bbox import bbox_overlaps from fast_rcnn.bbox_transform import bbox_transform DEBUG = False class AnchorTargetLayer(caffe.Layer): """ Assign anchors to ground-truth targets. Produces anchor classification labels and bounding-box regression targets. """  
    #生成anchors,reshap輸出
    def setup(self, bottom, top): layer_params = yaml.load(self.param_str_) anchor_scales = layer_params.get('scales', (8, 16, 32)) self._anchors = generate_anchors(scales=np.array(anchor_scales))#九個anchor的w h x_cstr y_cstr,對原始的wh做橫向縱向變化,並放大縮小得到九個 
        self._num_anchors = self._anchors.shape[0]<span style="font-family: Arial, Helvetica, sans-serif;">#anchor的個數</span> 
        self._feat_stride = layer_params['feat_stride']#網絡中參數16 (feature map為原圖大小的1/16,1000*600->60*40) 
  
        if DEBUG: print 'anchors:'  
            print self._anchors print 'anchor shapes:'  
            print np.hstack(( self._anchors[:, 2::4] - self._anchors[:, 0::4], self._anchors[:, 3::4] - self._anchors[:, 1::4], )) self._counts = cfg.EPS self._sums = np.zeros((1, 4)) self._squared_sums = np.zeros((1, 4)) self._fg_sum = 0 self._bg_sum = 0 self._count = 0 # allow boxes to sit over the edge by a small amount 
        self._allowed_border = layer_params.get('allowed_border', 0) #bottom 長度為4;bottom[0],map;bottom[1],boxes,labels;bottom[2],im_fo;bottom[3],圖片數據 
        height, width = bottom[0].data.shape[-2:] if DEBUG: print 'AnchorTargetLayer: height', height, 'width', width A = self._num_anchors#anchor的個數 
        # labels 
        top[0].reshape(1, 1, A * height, width) # bbox_targets 
        top[1].reshape(1, A * 4, height, width) # bbox_inside_weights 
        top[2].reshape(1, A * 4, height, width) # bbox_outside_weights 
        top[3].reshape(1, A * 4, height, width) #每個位置生成9個anchor,通過GT overlap過濾掉一部分anchors def forward(self, bottom, top): # Algorithm: 
        #  
        # for each (H, W) location i 
        # generate 9 anchor boxes centered on cell i 
        # apply predicted bbox deltas at cell i to each of the 9 anchors 
        # filter out-of-image anchors 
        # measure GT overlap 
  
        assert bottom[0].data.shape[0] == 1, \ 'Only single item batches are supported'  
  
#取得相應的anchors的h,w以及gt_box的位置,label # map of shape (..., H, W) height, width = bottom[0].data.shape[-2:] # GT boxes (x1, y1, x2, y2, label) gt_boxes = bottom[1].data#gt_boxes:長度不定 # im_info im_info = bottom[2].data[0, :] if DEBUG: print '' print 'im_size: ({}, {})'.format(im_info[0], im_info[1]) print 'scale: {}'.format(im_info[2]) print 'height, width: ({}, {})'.format(height, width) print 'rpn: gt_boxes.shape', gt_boxes.shape print 'rpn: gt_boxes', gt_boxes
#算出box的偏移量
# 1. Generate proposals from bbox deltas and shifted anchors shift_x = np.arange(0, width) * self._feat_stride shift_y = np.arange(0, height) * self._feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # add A anchors (1, A, 4) to 根據偏移量移動anchors # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = self._num_anchors K = shifts.shape[0] all_anchors = (self._anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, 4)) total_anchors = int(K * A)#K*A,所有anchors個數,包括越界的 #K: width*height #A: 9 # only keep anchors inside the image inds_inside = np.where( (all_anchors[:, 0] >= -self._allowed_border) & (all_anchors[:, 1] >= -self._allowed_border) & (all_anchors[:, 2] < im_info[1] + self._allowed_border) & # width (all_anchors[:, 3] < im_info[0] + self._allowed_border) # height )[0]#沒有過界的anchors索引 if DEBUG: print 'total_anchors', total_anchors print 'inds_inside', len(inds_inside) # keep only inside anchors anchors = all_anchors[inds_inside, :]#沒有過界的anchors if DEBUG: print 'anchors.shape', anchors.shape # label: 1 is positive, 0 is negative, -1 is dont care labels = np.empty((len(inds_inside), ), dtype=np.float32) labels.fill(-1) # overlaps between the anchors and the gt boxes # overlaps (ex, gt) overlaps = bbox_overlaps( #返回大小連續的overlaps,等同於排序 np.ascontiguousarray(anchors, dtype=np.float), np.ascontiguousarray(gt_boxes, dtype=np.float))
#找到某個box與所有gt_box最大的overlaps argmax_overlaps
= overlaps.argmax(axis=1)#overlaps每行最大值索引 max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]#最大的overlaps值
#找到某gt_box與所有box最大的overlaps gt_argmax_overlaps
= overlaps.argmax(axis=0) #overlaps每列中最大值索引 gt_max_overlaps = overlaps[gt_argmax_overlaps,#其對應的overlaps值 np.arange(overlaps.shape[1])] gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0] if not cfg.TRAIN.RPN_CLOBBER_POSITIVES: # assign bg labels first so that positive labels can clobber them labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0 //對於某個gt,overlap最大的anchor為1 # fg label: for each gt, anchor with highest overlap labels[gt_argmax_overlaps] = 1 //對於某個anchor,其overlap超過某值為1 # fg label: above threshold IOU labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1 if cfg.TRAIN.RPN_CLOBBER_POSITIVES: # assign bg labels last so that negative labels can clobber positives labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0 # subsample positive labels if we have too many 如果正樣本較多,降采樣 num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE) //正樣本數量 fg_inds = np.where(labels == 1)[0] if len(fg_inds) > num_fg: disable_inds = npr.choice( fg_inds, size=(len(fg_inds) - num_fg), replace=False) labels[disable_inds] = -1 //多余正樣本被隨機標為負樣本(這樣真的好嗎?) # subsample negative labels if we have too many 同樣處理負樣本 num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1) bg_inds = np.where(labels == 0)[0] if len(bg_inds) > num_bg: disable_inds = npr.choice( bg_inds, size=(len(bg_inds) - num_bg), replace=False) labels[disable_inds] = -1 //仍然標為負? #print "was %s inds, disabling %s, now %s inds" % ( #len(bg_inds), len(disable_inds), np.sum(labels == 0)) #保留最大overlaps的anchors,其他為0(非極大值抑制?) bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32) bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :]) ## #正樣本inside_weights為1,其余為0(等同於論文中的pi* bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32) bbox_inside_weights[labels == 1, :] = np.array(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS) bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
#對樣本權重進行歸一化
if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0: # uniform weighting of examples (given non-uniform sampling) num_examples = np.sum(labels >= 0) positive_weights = np.ones((1, 4)) * 1.0 / num_examples negative_weights = np.ones((1, 4)) * 1.0 / num_examples else: assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) & (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1)) positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT / np.sum(labels == 1)) negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) / np.sum(labels == 0)) bbox_outside_weights[labels == 1, :] = positive_weights bbox_outside_weights[labels == 0, :] = negative_weights if DEBUG: self._sums += bbox_targets[labels == 1, :].sum(axis=0) self._squared_sums += (bbox_targets[labels == 1, :] ** 2).sum(axis=0) self._counts += np.sum(labels == 1) means = self._sums / self._counts stds = np.sqrt(self._squared_sums / self._counts - means ** 2) print 'means:' print means print 'stdevs:' print stds # map up to original set of anchors 對total_anchors的其他box,weights及label進行填充 labels = _unmap(labels, total_anchors, inds_inside, fill=-1) bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0) bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0) bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0) if DEBUG: print 'rpn: max max_overlap', np.max(max_overlaps) print 'rpn: num_positive', np.sum(labels == 1) print 'rpn: num_negative', np.sum(labels == 0) self._fg_sum += np.sum(labels == 1) self._bg_sum += np.sum(labels == 0) self._count += 1 print 'rpn: num_positive avg', self._fg_sum / self._count print 'rpn: num_negative avg', self._bg_sum / self._count # labels 輸出標簽、box、inside_weights、outside_weights labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2) labels = labels.reshape((1, 1, A * height, width)) top[0].reshape(*labels.shape) top[0].data[...] = labels # bbox_targets bbox_targets = bbox_targets \ .reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2) top[1].reshape(*bbox_targets.shape) top[1].data[...] = bbox_targets # bbox_inside_weights bbox_inside_weights = bbox_inside_weights \ .reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2) assert bbox_inside_weights.shape[2] == height assert bbox_inside_weights.shape[3] == width top[2].reshape(*bbox_inside_weights.shape) top[2].data[...] = bbox_inside_weights # bbox_outside_weights bbox_outside_weights = bbox_outside_weights \ .reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2) assert bbox_outside_weights.shape[2] == height assert bbox_outside_weights.shape[3] == width top[3].reshape(*bbox_outside_weights.shape) top[3].data[...] = bbox_outside_weights def backward(self, top, propagate_down, bottom): """This layer does not propagate gradients.""" pass def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" pass def _unmap(data, count, inds, fill=0): """ Unmap a subset of item (data) back to the original set of items (of size count) """ #對於total_anchors,保留設定的label,其余填為fill if len(data.shape) == 1: ret = np.empty((count, ), dtype=np.float32) ret.fill(fill) ret[inds] = data else: ret = np.empty((count, ) + data.shape[1:], dtype=np.float32) ret.fill(fill) ret[inds, :] = data return ret def _compute_targets(ex_rois, gt_rois): """Compute bounding-box regression targets for an image.""" assert ex_rois.shape[0] == gt_rois.shape[0] assert ex_rois.shape[1] == 4 assert gt_rois.shape[1] == 5 return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)

 

  算偏移量時涉及到的公式:

     

這段代碼主要生成anchors,算出anchors的偏移量,並根據與gt的overlaps,進行NMS及排序,賦予其相應的標簽。

其中generate_anchors.py的源碼如下。這段代碼生成不同寬高比(1:2,1:1,2:1)、不同尺度(8 16 32)的anchors:

 

<span style="font-size:24px;">#功能描述:生成多尺度、多寬高比的anchors。  # 尺度為:128,256,512; 寬高比為:1:2,1:1,2:1 
  
import numpy as np  #提供矩陣運算功能的庫 
  
#生成anchors總函數:ratios為一個列表,表示寬高比為:1:2,1:1,2:1  #2**x表示:2^x,scales:[2^3 2^4 2^5],即:[8 16 32] 
def generate_anchors(base_size=16, ratios=[0.5, 1, 2], scales=2**np.arange(3, 6)): """ Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, 15, 15) window. """ base_anchor = np.array([1, 1, base_size, base_size]) - 1  #新建一個數組:base_anchor:[0 0 15 15] 
    ratio_anchors = _ratio_enum(base_anchor, ratios)  #枚舉各種寬高比 
    anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales)  #枚舉各種尺度,vstack:豎向合並數組 
                         for i in xrange(ratio_anchors.shape[0])]) #shape[0]:讀取矩陣第一維長度,其值為3 
    return anchors #用於返回width,height,(x,y)中心坐標(對於一個anchor窗口) 
def _whctrs(anchor): """ Return width, height, x center, and y center for an anchor (window). """  
    #anchor:存儲了窗口左上角,右下角的坐標 
    w = anchor[2] - anchor[0] + 1 h = anchor[3] - anchor[1] + 1 x_ctr = anchor[0] + 0.5 * (w - 1)  #anchor中心點坐標 
    y_ctr = anchor[1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr #給定一組寬高向量,輸出各個anchor,即預測窗口,**輸出anchor的面積相等,只是寬高比不同** 
def _mkanchors(ws, hs, x_ctr, y_ctr): #ws:[23 16 11],hs:[12 16 22],ws和hs一一對應。 
    """ Given a vector of widths (ws) and heights (hs) around a center (x_ctr, y_ctr), output a set of anchors (windows). """ ws = ws[:, np.newaxis]  #newaxis:將數組轉置 
    hs = hs[:, np.newaxis] anchors = np.hstack((x_ctr - 0.5 * (ws - 1),    #hstack、vstack:合並數組 
                         y_ctr - 0.5 * (hs - 1),    #anchor:[[-3.5 2 18.5 13] 
                         x_ctr + 0.5 * (ws - 1),     # [0 0 15 15] 
                         y_ctr + 0.5 * (hs - 1)))     # [2.5 -3 12.5 18]] 
    return anchors #枚舉一個anchor的各種寬高比,anchor[0 0 15 15],ratios[0.5,1,2] 
def _ratio_enum(anchor, ratios): """ 列舉關於一個anchor的三種寬高比 1:2,1:1,2:1 Enumerate a set of anchors for each aspect ratio wrt an anchor. """ w, h, x_ctr, y_ctr = _whctrs(anchor)  #返回寬高和中心坐標,w:16,h:16,x_ctr:7.5,y_ctr:7.5 
    size = w * h   #size:16*16=256 
    size_ratios = size / ratios  #256/ratios[0.5,1,2]=[512,256,128] 
    #round()方法返回x的四舍五入的數字,sqrt()方法返回數字x的平方根 
    ws = np.round(np.sqrt(size_ratios)) #ws:[23 16 11] 
    hs = np.round(ws * ratios)    #hs:[12 16 22],ws和hs一一對應。as:23&12 
    anchors = _mkanchors(ws, hs, x_ctr, y_ctr)  #給定一組寬高向量,輸出各個預測窗口 
    return anchors #枚舉一個anchor的各種尺度,以anchor[0 0 15 15]為例,scales[8 16 32] 
def _scale_enum(anchor, scales): """ 列舉關於一個anchor的三種尺度 128*128,256*256,512*512 Enumerate a set of anchors for each scale wrt an anchor. """ w, h, x_ctr, y_ctr = _whctrs(anchor) #返回寬高和中心坐標,w:16,h:16,x_ctr:7.5,y_ctr:7.5 
    ws = w * scales   #[128 256 512] 
    hs = h * scales   #[128 256 512] 
    anchors = _mkanchors(ws, hs, x_ctr, y_ctr) #[[-56 -56 71 71] [-120 -120 135 135] [-248 -248 263 263]] 
    return anchors if __name__ == '__main__':  #主函數 
    import time t = time.time() a = generate_anchors()  #生成anchor(窗口) 
    print time.time() - t   #顯示時間 
    print a from IPython import embed; embed() </span>  

 

 

 

參考:http://blog.csdn.net/u010668907/article/details/51942481

          http://blog.csdn.net/xzzppp/article/details/52317863


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM