Kafka Consumer應用與高級應用
PS:本博客僅作學習、總結、交流使用,參考以下博客&資料
1.http://kafka.apache.org/intro.html
2.https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+SimpleConsumer+Example
3.http://www.cnblogs.com/luotianshuai/p/5206662.html
4.http://www.cnblogs.com/fxjwind/p/3794255.html
5.https://cwiki.apache.org/confluence/display/KAFKA/Consumer+Group+Example
一.Kafka使用背景
- 我們想分析下用戶行為(pageviews),以便我們設計出更好的廣告位
- 我想對用戶的搜索關鍵詞進行統計,分析出當前的流行趨勢
- 有些數據,存儲數據庫浪費,直接存儲硬盤效率又低
二.Kafka(科技術語)
2.1 特性
-
通過O(1)的磁盤數據結構提供消息的持久化,這種結構對於即使數以TB的消息存儲也能夠保持長時間的穩定性能
-
支持通過Kafka服務器和消費機集群來分區消息
-
支持 Hadoop並行數據加載
2.2 Kafka相關術語介紹
-
Broker Kafka集群包含一個或多個服務器,這種服務器被稱為broker
-
Topic 每條發布到Kafka集群的消息都有一個類別,這個類別被稱為Topic。(物理上不同Topic的消息分開存儲,邏輯上一個Topic的消息雖然保存於一個或多個broker上但用戶只需指定消息的Topic即可生產或消費數據而不必關心數據存於何處)
-
Partition Partition是物理上的概念,每個Topic包含一個或多個Partition.
-
Producer 負責發布消息到Kafka broker
-
Consumer 消息消費者,向Kafka broker讀取消息的客戶端。
-
Consumer Group 每個Consumer屬於一個特定的Consumer Group(可為每個Consumer指定group name,若不指定group name則屬於默認的group)
三、KafKa安裝&配置 參考 http://www.cnblogs.com/denghongfu/p/6085685.html
四、KafKa Consumer接口
kafka的consumer接口,有兩種版本:
A.high-level 比較簡單不用關心offset, 會自動的讀zookeeper中該Consumer group的last offset
B.就是官網上提供的 SimpleConsumer Example low-level
幾點說明:
1. 如果consumer比partition多,是浪費,因為kafka的設計是在一個partition上是不允許並發的,所以consumer數不要大於partition數
2. 如果consumer比partition少,一個consumer會對應於多個partitions,這里主要合理分配consumer數和partition數,否則會導致partition里面的數據被取的不均勻
最好partiton數目是consumer數目的整數倍,所以partition數目很重要,比如取24,就很容易設定consumer數目
3. 如果consumer從多個partition讀到數據,不保證數據間的順序性,kafka只保證在一個partition上數據是有序的,但多個partition,根據你讀的順序會有不同
4. 增減consumer,broker,partition會導致rebalance,所以rebalance后consumer對應的partition會發生變化
5. High-level接口中獲取不到數據的時候是會block的
1.High-level
如果測試流程是,先produce一些數據,然后再用consumer讀的話,記得加上第一句設置因為初始的offset默認是非法的,然后這個設置的意思是,當offset非法時,如何修正offset,默認是largest,即最新,所以不加這個配置,你是讀不到你之前produce的數據的,而且這個時候你再加上smallest配置也沒用了,因為此時offset是合法的,不會再被修正了,需要手工或用工具改重置offset
package com.tydic.kafka.client;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.MessageAndMetadata;
import kafka.serializer.StringEncoder;
/**
* Description:
* Created by hadoop on 2016/11/9.
* Date 2016/11/9
*/
public class ConsumerKafka {
private ConsumerConfig config;
private String topic;
private int partitionsNum;
private MessageExecutor executor;
private ConsumerConnector connector;
private ExecutorService threadPool;
public ConsumerKafka(String topic,int partitionsNum,MessageExecutor executor) throws Exception{
Properties prop = new Properties();
prop.put("auto.offset.reset", "smallest"); //必須要加,如果要讀舊數據
prop.put("zookeeper.connect", "cna3:2181,cna4:2181,cna5:2181");
prop.put("serializer.class", StringEncoder.class.getName());
prop.put("metadata.broker.list", "cna3:9092,cna4:9092,cna5:9092");
prop.put("group.id", "test-consumer-group");
config = new ConsumerConfig(prop);
this.topic = topic;
this.partitionsNum = partitionsNum;
this.executor = executor;
}
public void start() throws Exception{
connector = Consumer.createJavaConsumerConnector(config);
Map<String,Integer> topics = new HashMap<String,Integer>();
topics.put(topic, partitionsNum);
Map<String, List<KafkaStream<byte[], byte[]>>> streams = connector.createMessageStreams(topics);
List<KafkaStream<byte[], byte[]>> partitions = streams.get(topic);
threadPool = Executors.newFixedThreadPool(partitionsNum);
for(KafkaStream<byte[], byte[]> partition : partitions){
threadPool.execute(new MessageRunner(partition));
}
}
public void close(){
try{
threadPool.shutdownNow();
}catch(Exception e){
//
}finally{
connector.shutdown();
}
}
class MessageRunner implements Runnable{
private KafkaStream<byte[], byte[]> partition;
MessageRunner(KafkaStream<byte[], byte[]> partition) {
this.partition = partition;
}
public void run(){
ConsumerIterator<byte[], byte[]> it = partition.iterator();
while(it.hasNext()){
MessageAndMetadata<byte[],byte[]> item = it.next();
System.out.println("partiton:" + item.partition());
System.out.println("offset:" + item.offset());
executor.execute(new String(item.message()));//UTF-8
}
}
}
interface MessageExecutor {
public void execute(String message);
}
/**
* @param args
*/
public static void main(String[] args) {
ConsumerKafka consumer = null;
try{
MessageExecutor executor = new MessageExecutor() {
public void execute(String message) {
System.out.println(message);
}
};
consumer = new ConsumerKafka("topic1",3, executor);
consumer.start();
}catch(Exception e){
e.printStackTrace();
}finally{
if(consumer != null){
consumer.close();
}
}
}
}
在用high-level的consumer時,兩個給力的工具,
1. bin/kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --group pv
可以看到當前group offset的狀況,比如這里看pv的狀況,3個partition
Group Topic Pid Offset logSize Lag Owner
pv page_visits 0 21 21 0 none
pv page_visits 1 19 19 0 none
pv page_visits 2 20 20 0 none
關鍵就是offset,logSize和Lag
這里以前讀完了,所以offset=logSize,並且Lag=0
2. bin/kafka-run-class.sh kafka.tools.UpdateOffsetsInZK earliest config/consumer.properties page_visits
3個參數,
[earliest | latest],表示將offset置到哪里
consumer.properties ,這里是配置文件的路徑
topic,topic名,這里是page_visits
我們對上面的pv group執行完這個操作后,再去check group offset狀況,結果如下,
Group Topic Pid Offset logSize Lag Owner
pv page_visits 0 0 21 21 none
pv page_visits 1 0 19 19 none
pv page_visits 2 0 20 20 none
可以看到offset已經被清0,Lag=logSize
多線程consumer的完整代碼
import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ConsumerGroupExample {
private final ConsumerConnector consumer;
private final String topic;
private ExecutorService executor;
public ConsumerGroupExample(String a_zookeeper, String a_groupId, String a_topic) {
consumer = kafka.consumer.Consumer.createJavaConsumerConnector( // 創建Connector,注意下面對conf的配置
createConsumerConfig(a_zookeeper, a_groupId));
this.topic = a_topic;
}
public void shutdown() {
if (consumer != null) consumer.shutdown();
if (executor != null) executor.shutdown();
}
public void run(int a_numThreads) { // 創建並發的consumers
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(a_numThreads)); // 描述讀取哪個topic,需要幾個線程讀
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap); // 創建Streams
List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic); // 每個線程對應於一個KafkaStream
// now launch all the threads
//
executor = Executors.newFixedThreadPool(a_numThreads);
// now create an object to consume the messages
//
int threadNumber = 0;
for (final KafkaStream stream : streams) {
executor.submit(new ConsumerTest(stream, threadNumber)); // 啟動consumer thread
threadNumber++;
}
}
private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
Properties props = new Properties();
props.put("zookeeper.connect", a_zookeeper);
props.put("group.id", a_groupId);
props.put("zookeeper.session.timeout.ms", "400");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000");
return new ConsumerConfig(props);
}
public static void main(String[] args) {
String zooKeeper = args[0];
String groupId = args[1];
String topic = args[2];
int threads = Integer.parseInt(args[3]);
ConsumerGroupExample example = new ConsumerGroupExample(zooKeeper, groupId, topic);
example.run(threads);
try {
Thread.sleep(10000);
} catch (InterruptedException ie) {
}
example.shutdown();
}
}
2.low-level SimpleConsumer Example
package com.tydic.kafka.client;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import com.alibaba.fastjson.JSON;
import com.tydic.kafka.util.Utils;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.cluster.Broker;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.FetchResponse;
import kafka.javaapi.OffsetResponse;
import kafka.javaapi.PartitionMetadata;
import kafka.javaapi.TopicMetadata;
import kafka.javaapi.TopicMetadataRequest;
import kafka.javaapi.TopicMetadataResponse;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;
/**
* Description:kafka消費者實現,關注信息消費位置
* Created by hadoop on 2016/11/18.
* Date 2016/11/18
*/
public class KafkaSimpleConsumer {
public static void main(String arg[]) {
KafkaSimpleConsumer example = new KafkaSimpleConsumer();
List<String> seeds = new ArrayList<>();
int maxReads = 0;
int partition = 0;
int port = 0;
String topic = "";
try {
System.out.println(JSON.toJSONString(arg, true));
Map<String, Object> paramMap = Utils.parseParam(arg);
System.out.println(JSON.toJSONString(paramMap, true));
if (null == paramMap || paramMap.size() == 0) {
return;
}
maxReads = (int) paramMap.get("consumer.maxReads");
partition = (int) paramMap.get("consumer.partition");
List<String> seedStr = (List<String>) paramMap.get("consumer.seedBrokers");
for(String s:seedStr){
seeds.add(s);
}
port = (int) paramMap.get("consumer.port");
topic = (String) paramMap.get("consumer.topic");
System.out.print("maxReads=" + maxReads + "partition=" + partition + "seedStr=" + seedStr + "port=" + port + "topic=" + topic);
example.run(maxReads, topic, partition, seeds, port);
} catch (Exception e) {
System.out.println("Oops:" + e);
e.printStackTrace();
}
}
private List<String> m_replicaBrokers = new ArrayList<>();
public KafkaSimpleConsumer() {
m_replicaBrokers = new ArrayList<>();
}
/**
*
* @param a_maxReads Maximum number of messages to read (so we don’t loop forever) 最大讀取消息數量
* @param a_topic Topic to read from 訂閱的topic
* @param a_partition Partition to read from 查找的分區
* @param a_seedBrokers One broker to use for Metadata lookup broker節點
* @param a_port Port the brokers listen on 端口
* @throws Exception
*/
public void run(long a_maxReads, String a_topic, int a_partition,
List<String> a_seedBrokers, int a_port) throws Exception {
// find the meta data about the topic and partition we are interested in
// 獲取指定topic partition的元數據
PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic,
a_partition);
if (metadata == null) {
System.out.println("Can't find metadata for Topic and Partition. Exiting");
return;
}
if (metadata.leader() == null) {
System.out.println("Can't find Leader for Topic and Partition. Exiting");
return;
}
String leadBroker = metadata.leader().host();
String clientName = "Client_" + a_topic + "_" + a_partition;
SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
long readOffset = getLastOffset(consumer, a_topic, a_partition,
kafka.api.OffsetRequest.LatestTime(), clientName);
System.out.print("readOffset="+readOffset+kafka.api.OffsetRequest.LatestTime());
int numErrors = 0;
while (a_maxReads > 0) {
if (consumer == null) {
consumer = new SimpleConsumer(leadBroker, a_port, 100000,
64 * 1024, clientName);
}
// Note: this fetchSize of 100000 might need to be increased if
// large batches are written to Kafka
FetchRequest req = new FetchRequestBuilder().clientId(clientName)
.addFetch(a_topic, a_partition, readOffset, 100000).build();
FetchResponse fetchResponse = consumer.fetch(req);
if (fetchResponse.hasError()) {
System.out.println("error");
numErrors++;
// Something went wrong!
short code = fetchResponse.errorCode(a_topic, a_partition);
System.out.println("Error fetching data from the Broker:"
+ leadBroker + " Reason: " + code);
if (numErrors > 5) break;
// 處理offset非法的問題,用最新的offset
if (code == ErrorMapping.OffsetOutOfRangeCode()) {
// We asked for an invalid offset. For simple case ask for
// the last element to reset
readOffset = getLastOffset(consumer, a_topic, a_partition,
kafka.api.OffsetRequest.LatestTime(), clientName);
continue;
}
consumer.close();
consumer = null;
// 更新leader broker
leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
continue;
}
numErrors = 0;
long numRead = 0;
for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(
a_topic, a_partition)) {
long currentOffset = messageAndOffset.offset();
System.out.println("currentOffset="+currentOffset+"readOffset="+readOffset);
// 必要判斷,因為對於compressed message,會返回整個block,所以可能包含old的message
if (currentOffset < readOffset) {
System.out.println("Found an old offset: " + currentOffset
+ " Expecting: " + readOffset);
continue;
}
// 獲取下一個readOffset
readOffset = messageAndOffset.nextOffset();
ByteBuffer payload = messageAndOffset.message().payload();
byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
System.out.println(String.valueOf(messageAndOffset.offset())
+ ": " + new String(bytes, "UTF-8"));
numRead++;
a_maxReads--;
}
if (numRead == 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
ie.printStackTrace();
}
}
}
if (consumer != null)
consumer.close();
}
public static long getLastOffset(SimpleConsumer consumer, String topic,
int partition, long whichTime, String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<>();
//build offset fetch request info
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(
requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
//取到offsets
OffsetResponse response = consumer.getOffsetsBefore(request);
if (response.hasError()) {
System.out.println("Error fetching data Offset Data the Broker. Reason: "
+ response.errorCode(topic, partition));
return 0;
}
//取到的一組offset
long[] offsets = response.offsets(topic, partition);
//取第一個開始讀
return offsets[0];
}
/**
* @Descrition :Finding the Lead Broker for a Topic and Partition 從活躍的Broker列表中找出指定Topic、Partition中的Leader Broker
*思路就是,遍歷每個broker,取出該topic的metadata,然后再遍歷其中的每個partition metadata,
* 如果找到我們要找的partition就返回根據返回的PartitionMetadata.leader().host()找到leader broker
* @param a_oldLeader
* @param a_topic
* @param a_partition
* @param a_port
* @return
* @throws Exception
*/
private String findNewLeader(String a_oldLeader, String a_topic,
int a_partition, int a_port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep;
PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host())
&& i == 0) {
// first time through if the leader hasn't changed give
// ZooKeeper a second to recover
// second time, assume the broker did recover before failover,
// or it was a non-Broker issue
//
goToSleep = true;
} else {
return metadata.leader().host();
}
if (goToSleep) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
ie.printStackTrace();
}
}
}
System.out.println("Unable to find new leader after Broker failure. Exiting");
throw new Exception("Unable to find new leader after Broker failure. Exiting");
}
private PartitionMetadata findLeader(List<String> a_seedBrokers,
int a_port, String a_topic, int a_partition) {
PartitionMetadata returnMetaData = null;
loop:
//遍歷每個broker
for (String seed : a_seedBrokers) {
//遍歷每個broker
SimpleConsumer consumer = null;
try {
//創建Simple Consumer,
consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
//發送TopicMetadata Request請求
TopicMetadataResponse resp = consumer.send(req);
//取到Topic的Metadata
List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
//遍歷每個partition的metadata
for (PartitionMetadata part : item.partitionsMetadata()) {
//確認是否是我們要找的partition
if (part.partitionId() == a_partition) {
returnMetaData = part;
break loop; //找到就返回
}
}
}
} catch (Exception e) {
System.out.println("Error communicating with Broker [" + seed
+ "] to find Leader for [" + a_topic + ", "
+ a_partition + "] Reason: " + e);
} finally {
if (consumer != null)
consumer.close();
}
}
if (returnMetaData != null) {
m_replicaBrokers.clear();
for (Broker replica : returnMetaData.replicas()) {
m_replicaBrokers.add(replica.host());
}
}
return returnMetaData;
}
}
It's all。
