思路:
首先從文本讀入一行數據,按空格對字符串進行切割,切割后包含學生姓名和某一科的成績,map輸出key->學生姓名 value->某一個成績
然后在reduce里面對成績進行遍歷求和,求平均數,然后輸出key->學生姓名 value->平均成績
源數據:
chines.txt
zhangsan 78 lisi 89 wangwu 96 zhaoliu 67
english.txt
zhangsan 80 lisi 82 wangwu 84 zhaoliu 86
math.txt
zhangsan 88 lisi 99 wangwu 66 zhaoliu 77
源代碼:
package com.duking.hadoop;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.GenericOptionsParser;
public class Score {
public static class Map extends
Mapper<Object, Text, Text, IntWritable> {
// 實現map函數
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// 將輸入的純文本文件的數據轉化成String
String line = value.toString();
// 將輸入的數據首先按行進行分割
StringTokenizer tokenizerArticle = new StringTokenizer(line); //以空格分隔字符串
// 分別對每一行進行處理
while (tokenizerArticle.hasMoreElements()) {
String strName= tokenizerArticle.nextToken(); // 學生姓名部分
String strScore = tokenizerArticle.nextToken();// 成績部分
Text name = new Text(strName);
int scoreInt = Integer.parseInt(strScore);
// 輸出姓名和成績
context.write(name, new IntWritable(scoreInt));
}
}
}
public static class Reduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
// 實現reduce函數
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
int count = 0;
Iterator<IntWritable> iterator = values.iterator(); //循環遍歷成績
while (iterator.hasNext()) {
sum += iterator.next().get();// 計算總分
count++;// 統計總的科目數
}
int average = (int) sum / count;// 計算平均成績
context.write(key, new IntWritable(average));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("mapred.job.tracker", "192.168.60.129:9000");
// 指定帶運行參數的目錄為輸入輸出目錄
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
/*
* 指定工程下的input2為文件輸入目錄 output2為文件輸出目錄 String[] ioArgs = new String[] {
* "input2", "output2" };
*
* String[] otherArgs = new GenericOptionsParser(conf, ioArgs)
* .getRemainingArgs();
*/
if (otherArgs.length != 2) { // 判斷路徑參數是否為2個
System.err.println("Usage: Data Deduplication <in> <out>");
System.exit(2);
}
// set maprduce job name
Job job = new Job(conf, "Score Average");
job.setJarByClass(Score.class);
// 設置Map、Combine和Reduce處理類
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
// 設置輸出類型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 設置輸入和輸出目錄
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
