Problem:
Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of points (i, j, k)
such that the distance between i
and j
equals the distance between i
and k
(the order of the tuple matters).
Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000](inclusive).
Example:
Input: [[0,0],[1,0],[2,0]] Output: 2 Explanation: The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]
Summary:
定義一種類似“回形標”的三元組結構,即在三元組(i, j, k)中i和j之間的距離與i和k之間的距離相等。找到一組坐標數據中,可構成幾組這樣的“回形標”結構。
Analysis:
若在一組點集{a, b, c, d, ...}中,以點a為一個端點,與dis(a, b)相等的點存在n個(包含點b),那么在這n個點中任意選出兩個點與點a構成三元組,則有n(n - 1) / 2種情況。但因為三元組[a, b, c]與三元組[a, c, b]並不相同,所以實際為排列問題,答案為n(n - 1)。
代碼中正是以此為基本思想,找到以每一個點為端點時,與其余點共組成多少種不同的距離,此處用map記錄,key為距離長度,value為距離出現次數。再根據前面的公式計算即可。
1 class Solution { 2 public: 3 int numberOfBoomerangs(vector<pair<int, int>>& points) { 4 int len = points.size(), res = 0; 5 unordered_map<int, int> m; 6 7 for (int i = 0; i < len; i++) { 8 for (int j = 0; j < len; j++) { 9 int x = points[i].first - points[j].first; 10 int y = points[i].second - points[j].second; 11 m[x * x + y * y]++; 12 } 13 14 unordered_map<int, int> :: iterator it; 15 for (it = m.begin(); it != m.end(); it++) { 16 int tmp = it->second; 17 res += tmp * (tmp - 1); 18 } 19 m.clear(); 20 } 21 22 return res; 23 } 24 };