數學符號arg含義


argument of the maximum/minimum

arg max f(x): 當f(x)取最大值時,x的取值

arg min f(x):當f(x)取最小值時,x的取值

 

表示使目標函數取最小值時的變量值
From Wikipedia

In mathematicsarg max (or argmax) stands for the argument of the maximum, that is to say, the set of points of the given argument for which the value of the given expression attains its maximum value:[note 1]

\underset{x}{\operatorname{arg\,max}} \, f(x) := \{x\ |\ \forall y : f(y) \le f(x)\}

In other words,

\underset{x}{\operatorname{arg\,max}} \, f(x)

is the set of values of x for which f(x) has the largest value M. For example, if f(x) is 1−|x|, then it attains its maximum value of 1 at x = 0 and only there, so \underset{x}{\operatorname{arg\,max}} \, (1-|x|) = \{0\}.


Equivalently, if M is the maximum of f, then the arg max is the level set of the maximum:

\underset{x}{\operatorname{arg\,max}} \, f(x) = f^{-1}(M) = \{x\ |\ f(x) = M \}

If the maximum is reached at a single value, then one refers to the point as the arg max, meaning we define the arg max as a point, not a set of points. So, for example,

\underset{x\in \Bbb{R}}{\operatorname{arg\,max}} (x(10-x)) = 5                      //只有一個值使函數取最大值,則arg為該值

(rather than the singleton set {5}), since the maximum value of x(10 − x) is 25, which happens when x = 5.[note 2]

However, in case the maximum is reached at many values, arg max is a set of points.

Then, we have for example

\underset{x \in [0,4\pi]}{\operatorname{arg\,max}} \, \cos(x) = \{0,2\pi,4\pi\}                       //若多個值使函數取最大值,則arg為集合

since the maximum value of cos(x) is 1, which happens on this interval when x = 0, 2π or 4π. On the whole real line, the arg max is \{0, 2\pi, -2\pi, 4\pi, \dots \}.

arg min (or argmin) is defined analogously.

Note also that functions do not in general attain a maximum value, and hence will in general not have an arg max: \underset{x\in \Bbb{R}}{\operatorname{arg\,max}}\, x is undefined, as x is unbounded on the real line. However, by the extreme value theorem (or the classical compactness argument), a continuous function on a compact interval has a maximum, and thus an arg max.                  //若無法取到最大值,無定義

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM