簡介
Tensorflow API提供了Cluster、Server以及Supervisor來支持模型的分布式訓練。
關於Tensorflow的分布式訓練介紹可以參考Distributed Tensorflow。簡單的概括說明如下:
- Tensorflow分布式Cluster由多個Task組成,每個Task對應一個tf.train.Server實例,作為Cluster的一個單獨節點;
- 多個相同作用的Task可以被划分為一個job,例如ps job作為參數服務器只保存Tensorflow model的參數,而worker job則作為計算節點只執行計算密集型的Graph計算。
- Cluster中的Task會相對進行通信,以便進行狀態同步、參數更新等操作。
Tensorflow分布式集群的所有節點執行的代碼是相同的。分布式任務代碼具有固定的模式:
# 第1步:命令行參數解析,獲取集群的信息ps_hosts和worker_hosts,以及當前節點的角色信息job_name和task_index # 第2步:創建當前task結點的Server cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts}) server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) # 第3步:如果當前節點是ps,則調用server.join()無休止等待;如果是worker,則執行第4步。 if FLAGS.job_name == "ps": server.join() # 第4步:則構建要訓練的模型 # build tensorflow graph model # 第5步:創建tf.train.Supervisor來管理模型的訓練過程 # Create a "supervisor", which oversees the training process. sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0), logdir="/tmp/train_logs") # The supervisor takes care of session initialization and restoring from a checkpoint. sess = sv.prepare_or_wait_for_session(server.target) # Loop until the supervisor shuts down while not sv.should_stop() # train model
Tensorflow分布式訓練代碼框架
根據上面說到的Tensorflow分布式訓練代碼固定模式,如果要編寫一個分布式的Tensorlfow代碼,其框架如下所示。
import tensorflow as tf # Flags for defining the tf.train.ClusterSpec tf.app.flags.DEFINE_string("ps_hosts", "", "Comma-separated list of hostname:port pairs") tf.app.flags.DEFINE_string("worker_hosts", "", "Comma-separated list of hostname:port pairs") # Flags for defining the tf.train.Server tf.app.flags.DEFINE_string("job_name", "", "One of 'ps', 'worker'") tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job") FLAGS = tf.app.flags.FLAGS def main(_): ps_hosts = FLAGS.ps_hosts.split(",") worker_hosts = FLAGS.worker_hosts(",") # Create a cluster from the parameter server and worker hosts. cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts}) # Create and start a server for the local task. server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) if FLAGS.job_name == "ps": server.join() elif FLAGS.job_name == "worker": # Assigns ops to the local worker by default. with tf.device(tf.train.replica_device_setter( worker_device="/job:worker/task:%d" % FLAGS.task_index, cluster=cluster)): # Build model... loss = ... global_step = tf.Variable(0) train_op = tf.train.AdagradOptimizer(0.01).minimize( loss, global_step=global_step) saver = tf.train.Saver() summary_op = tf.merge_all_summaries() init_op = tf.initialize_all_variables() # Create a "supervisor", which oversees the training process. sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0), logdir="/tmp/train_logs", init_op=init_op, summary_op=summary_op, saver=saver, global_step=global_step, save_model_secs=600) # The supervisor takes care of session initialization and restoring from # a checkpoint. sess = sv.prepare_or_wait_for_session(server.target) # Start queue runners for the input pipelines (if any). sv.start_queue_runners(sess) # Loop until the supervisor shuts down (or 1000000 steps have completed). step = 0 while not sv.should_stop() and step < 1000000: # Run a training step asynchronously. # See `tf.train.SyncReplicasOptimizer` for additional details on how to # perform *synchronous* training. _, step = sess.run([train_op, global_step]) if __name__ == "__main__": tf.app.run()
對於所有Tensorflow分布式代碼,可變的只有兩點:
- 構建tensorflow graph模型代碼;
- 每一步執行訓練的代碼
分布式MNIST任務
我們通過修改tensorflow/tensorflow提供的mnist_softmax.py來構造分布式的MNIST樣例來進行驗證。修改后的代碼請參考mnist_dist.py。
我們同樣通過tensorlfow的Docker image來啟動一個容器來進行驗證。
$ docker run -d -v /path/to/your/code:/tensorflow/mnist --name tensorflow tensorflow/tensorflow
啟動tensorflow之后,啟動4個Terminal,然后通過下面命令進入tensorflow容器,切換到/tensorflow/mnist目錄下
$ docker exec -ti tensorflow /bin/bash
$ cd /tensorflow/mnist
然后在四個Terminal中分別執行下面一個命令來啟動Tensorflow cluster的一個task節點,
# Start ps 0 python mnist_dist.py --ps_hosts=localhost:2221,localhost:2222 --worker_hosts=localhost:2223,localhost:2224 --job_name=ps --task_index=0 # Start ps 1 python mnist_dist.py --ps_hosts=localhost:2221,localhost:2222 --worker_hosts=localhost:2223,localhost:2224 --job_name=ps --task_index=1 # Start worker 0 python mnist_dist.py --ps_hosts=localhost:2221,localhost:2222 --worker_hosts=localhost:2223,localhost:2224 --job_name=worker --task_index=0 # Start worker 1 python mnist_dist.py --ps_hosts=localhost:2221,localhost:2222 --worker_hosts=localhost:2223,localhost:2224 --job_name=worker --task_index=1
具體效果自己驗證哈。