摘要:
1.基本術語
2.運行架構
2.1基本架構
2.2運行流程
2.3相關的UML類圖
2.4調度模塊:
2.4.1作業調度簡介
2.4.2任務調度簡介
3.運行模式
3.1 standalone模式
4.RDD實戰
總結:
- 基本術語:
- Application:在Spark 上建立的用戶程序,一個程序由一個驅動程序(Driver Program)和集群中的執行進程(Executer)構成。
- Driver Program:運行應用程序(Application)的main函數和創建SparkContext的程序。
- Executer:運行在工作節點(Work Node)上的進程。Executer負責運行任務(Task)並將各節點的數據保存在內存或磁盤中。每個應用程序都有自己對應Executer
- Work Node:集群中運行應用程序(Applicatuon)的節點
- Cluster Manager: 在集群上獲取資源的外部服務(如Standalone,Mesos,Yarn),稱作資源管理器或集群管理器
- Job: 包含多個Task的並行計算,往往由Spark Action(如save,collect)觸發生成,一個Application中往往會產生多個Job
- Stage:每個Job被分成了更小的任務集合(TaskSet),各個階段(Stage)相互依賴
- Task:被發送到某一個Executer的工作單元
- DAGScheduler:基於Stage的邏輯調度模塊,負責將每個Job分割成一個DAG圖
- TaskScheduler:基於Task的任務調度模塊,負責每個Task的跟蹤和向DAGScheduler匯報任務執行情況
2.運行架構
2.1基本架構:
圖示:
Spark Application在集群中以一組獨立的進程運行,通過你的驅動程序(driver program)中的SparkContext 對象進行協作。
具體來說,SparkContext可以連接到多種類型的集群管理器 cluster managers (standalone cluster manager, Mesos ,YARN),這些 cluster managers 負責跨應用程序分配資源。一旦連接,Spark就獲得集群中的節點上的executors,接下來,它會將應用程序代碼發送到executors。最后,SparkContext發送tasks到executors運行。
注意:該驅動程序會一直監聽並接受其executor傳入的連接(spark.driver.port在網絡配置部分)。這樣,driver program必須可以尋找到工作節點的網絡地址。數據不能跨應用程序(SparkContext)訪問,除非寫入外部系統
2.1.1 SparkContext類(代表連接到spark集群,現在一個jvm只能有一個sc,以后會取消):
幾個重要的屬性(包含DAGScheduler,TaskScheduler調度,獲取executor,心跳與監聽等):
說明:這里的下划線_代表默認值,比如Int 默認值就是0,String默認值就是None 參考知乎
/* ------------------------------------------------------------------------------------- * | Private variables. These variables keep the internal state of the context, and are | | not accessible by the outside world. They're mutable since we want to initialize all | | of them to some neutral value ahead of time, so that calling "stop()" while the | | constructor is still running is safe. | * ------------------------------------------------------------------------------------- */ private var _conf: SparkConf = _ private var _eventLogDir: Option[URI] = None private var _eventLogCodec: Option[String] = None private var _env: SparkEnv = _ private var _jobProgressListener: JobProgressListener = _ private var _statusTracker: SparkStatusTracker = _ private var _progressBar: Option[ConsoleProgressBar] = None private var _ui: Option[SparkUI] = None private var _hadoopConfiguration: Configuration = _ private var _executorMemory: Int = _ private var _schedulerBackend: SchedulerBackend = _ private var _taskScheduler: TaskScheduler = _ private var _heartbeatReceiver: RpcEndpointRef = _ @volatile private var _dagScheduler: DAGScheduler = _ private var _applicationId: String = _ private var _applicationAttemptId: Option[String] = None private var _eventLogger: Option[EventLoggingListener] = None private var _executorAllocationManager: Option[ExecutorAllocationManager] = None private var _cleaner: Option[ContextCleaner] = None private var _listenerBusStarted: Boolean = false private var _jars: Seq[String] = _ private var _files: Seq[String] = _ private var _shutdownHookRef: AnyRef = _
2.1.2 Executor(一個運行任務的線程池,通過RPC與Driver通信):
心跳報告(心跳進程,記錄心跳失敗次數和接受task的心跳):
這里有兩個參數:spark.executor.heartbeat.maxFailures = 60,spark.executor.heartbeatInterval = 10s,意味着最多每隔10min會重新發送一次心跳
/** Reports heartbeat and metrics for active tasks to the driver. */ private def reportHeartBeat(): Unit = { // list of (task id, accumUpdates) to send back to the driver val accumUpdates = new ArrayBuffer[(Long, Seq[AccumulatorV2[_, _]])]() val curGCTime = computeTotalGcTime() for (taskRunner <- runningTasks.values().asScala) { if (taskRunner.task != null) { taskRunner.task.metrics.mergeShuffleReadMetrics() taskRunner.task.metrics.setJvmGCTime(curGCTime - taskRunner.startGCTime) accumUpdates += ((taskRunner.taskId, taskRunner.task.metrics.accumulators())) } } val message = Heartbeat(executorId, accumUpdates.toArray, env.blockManager.blockManagerId) try { val response = heartbeatReceiverRef.askWithRetry[HeartbeatResponse]( message, RpcTimeout(conf, "spark.executor.heartbeatInterval", "10s")) if (response.reregisterBlockManager) { logInfo("Told to re-register on heartbeat") env.blockManager.reregister() } heartbeatFailures = 0 } catch { case NonFatal(e) => logWarning("Issue communicating with driver in heartbeater", e) heartbeatFailures += 1 if (heartbeatFailures >= HEARTBEAT_MAX_FAILURES) { logError(s"Exit as unable to send heartbeats to driver " + s"more than $HEARTBEAT_MAX_FAILURES times") System.exit(ExecutorExitCode.HEARTBEAT_FAILURE) } } }
Task管理(taskRunner類的啟動,停止)
// Maintains the list of running tasks. private val runningTasks = new ConcurrentHashMap[Long, TaskRunner]
下面是TaskRunner 的run方法,貼出來,以后研究
override def run(): Unit = { val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId) val deserializeStartTime = System.currentTimeMillis() Thread.currentThread.setContextClassLoader(replClassLoader) val ser = env.closureSerializer.newInstance() logInfo(s"Running $taskName (TID $taskId)") execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER) var taskStart: Long = 0 startGCTime = computeTotalGcTime() try { val (taskFiles, taskJars, taskProps, taskBytes) = Task.deserializeWithDependencies(serializedTask) // Must be set before updateDependencies() is called, in case fetching dependencies // requires access to properties contained within (e.g. for access control). Executor.taskDeserializationProps.set(taskProps) updateDependencies(taskFiles, taskJars) task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader) task.localProperties = taskProps task.setTaskMemoryManager(taskMemoryManager) // If this task has been killed before we deserialized it, let's quit now. Otherwise, // continue executing the task. if (killed) { // Throw an exception rather than returning, because returning within a try{} block // causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl // exception will be caught by the catch block, leading to an incorrect ExceptionFailure // for the task. throw new TaskKilledException } logDebug("Task " + taskId + "'s epoch is " + task.epoch) env.mapOutputTracker.updateEpoch(task.epoch) // Run the actual task and measure its runtime. taskStart = System.currentTimeMillis() var threwException = true val value = try { val res = task.run( taskAttemptId = taskId, attemptNumber = attemptNumber, metricsSystem = env.metricsSystem) threwException = false res } finally { val releasedLocks = env.blockManager.releaseAllLocksForTask(taskId) val freedMemory = taskMemoryManager.cleanUpAllAllocatedMemory() if (freedMemory > 0) { val errMsg = s"Managed memory leak detected; size = $freedMemory bytes, TID = $taskId" if (conf.getBoolean("spark.unsafe.exceptionOnMemoryLeak", false) && !threwException) { throw new SparkException(errMsg) } else { logError(errMsg) } } if (releasedLocks.nonEmpty) { val errMsg = s"${releasedLocks.size} block locks were not released by TID = $taskId:\n" + releasedLocks.mkString("[", ", ", "]") if (conf.getBoolean("spark.storage.exceptionOnPinLeak", false) && !threwException) { throw new SparkException(errMsg) } else { logWarning(errMsg) } } } val taskFinish = System.currentTimeMillis() // If the task has been killed, let's fail it. if (task.killed) { throw new TaskKilledException } val resultSer = env.serializer.newInstance() val beforeSerialization = System.currentTimeMillis() val valueBytes = resultSer.serialize(value) val afterSerialization = System.currentTimeMillis() // Deserialization happens in two parts: first, we deserialize a Task object, which // includes the Partition. Second, Task.run() deserializes the RDD and function to be run. task.metrics.setExecutorDeserializeTime( (taskStart - deserializeStartTime) + task.executorDeserializeTime) // We need to subtract Task.run()'s deserialization time to avoid double-counting task.metrics.setExecutorRunTime((taskFinish - taskStart) - task.executorDeserializeTime) task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime) task.metrics.setResultSerializationTime(afterSerialization - beforeSerialization) // Note: accumulator updates must be collected after TaskMetrics is updated val accumUpdates = task.collectAccumulatorUpdates() // TODO: do not serialize value twice val directResult = new DirectTaskResult(valueBytes, accumUpdates) val serializedDirectResult = ser.serialize(directResult) val resultSize = serializedDirectResult.limit // directSend = sending directly back to the driver val serializedResult: ByteBuffer = { if (maxResultSize > 0 && resultSize > maxResultSize) { logWarning(s"Finished $taskName (TID $taskId). Result is larger than maxResultSize " + s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " + s"dropping it.") ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize)) } else if (resultSize > maxDirectResultSize) { val blockId = TaskResultBlockId(taskId) env.blockManager.putBytes( blockId, new ChunkedByteBuffer(serializedDirectResult.duplicate()), StorageLevel.MEMORY_AND_DISK_SER) logInfo( s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)") ser.serialize(new IndirectTaskResult[Any](blockId, resultSize)) } else { logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver") serializedDirectResult } } execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult) } catch { case ffe: FetchFailedException => val reason = ffe.toTaskEndReason setTaskFinishedAndClearInterruptStatus() execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason)) case _: TaskKilledException | _: InterruptedException if task.killed => logInfo(s"Executor killed $taskName (TID $taskId)") setTaskFinishedAndClearInterruptStatus() execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled)) case CausedBy(cDE: CommitDeniedException) => val reason = cDE.toTaskEndReason setTaskFinishedAndClearInterruptStatus() execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason)) case t: Throwable => // Attempt to exit cleanly by informing the driver of our failure. // If anything goes wrong (or this was a fatal exception), we will delegate to // the default uncaught exception handler, which will terminate the Executor. logError(s"Exception in $taskName (TID $taskId)", t) // Collect latest accumulator values to report back to the driver val accums: Seq[AccumulatorV2[_, _]] = if (task != null) { task.metrics.setExecutorRunTime(System.currentTimeMillis() - taskStart) task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime) task.collectAccumulatorUpdates(taskFailed = true) } else { Seq.empty } val accUpdates = accums.map(acc => acc.toInfo(Some(acc.value), None)) val serializedTaskEndReason = { try { ser.serialize(new ExceptionFailure(t, accUpdates).withAccums(accums)) } catch { case _: NotSerializableException => // t is not serializable so just send the stacktrace ser.serialize(new ExceptionFailure(t, accUpdates, false).withAccums(accums)) } } setTaskFinishedAndClearInterruptStatus() execBackend.statusUpdate(taskId, TaskState.FAILED, serializedTaskEndReason) // Don't forcibly exit unless the exception was inherently fatal, to avoid // stopping other tasks unnecessarily. if (Utils.isFatalError(t)) { SparkUncaughtExceptionHandler.uncaughtException(t) } } finally { runningTasks.remove(taskId) } }
2.2運行流程:
圖示:
注意這里的StandaloneExecutorBackend是一個概念(我在spark項目中沒找到),實際上的spark standalone的資源調度類是 CoarseGrainedExecutorBackend
1.構建Spark Application的運行環境(啟動SparkContext),SparkContext向資源管理器(ClusterManager)(可以是Standalone、Mesos或YARN)注冊並申請運行Executor資源;
2.資源管理器分配Executor資源並啟動StandaloneExecutorBackend,Executor運行情況將隨着心跳發送到資源管理器上;
3.SparkContext構建成DAG圖,將DAG圖分解成Stage,並把Taskset發送給Task Scheduler。
Executor向SparkContext申請Task,Task Scheduler將Task發放給Executor運行同時SparkContext將應用程序代碼發放給Executor。
4.Task在Executor上運行,運行完畢釋放所有資源。
2.3相關的類:
ExecutorBackend:
特質簽名(Executor用來向集群調度發送更新的插件)
各種運行模式的類圖:
其中standalone是用SparkDeploySchedulerBackend配合TeskSchedulerImpl工作,相關類圖應該是:
SchedulerBackend特質(核心函數:reviveOffers())
CoarseGrainedExecutorBackend(receive方法里是若干模式匹配,類似於switch case,根據相關模式執行相應操作。主要有注冊Executor,運行Task等)
override def receive: PartialFunction[Any, Unit] = { case RegisteredExecutor(hostname) => logInfo("Successfully registered with driver") executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false) case RegisterExecutorFailed(message) => logError("Slave registration failed: " + message) exitExecutor(1) case LaunchTask(data) => if (executor == null) { logError("Received LaunchTask command but executor was null") exitExecutor(1) } else { val taskDesc = ser.deserialize[TaskDescription](data.value) logInfo("Got assigned task " + taskDesc.taskId) executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber, taskDesc.name, taskDesc.serializedTask) } case KillTask(taskId, _, interruptThread) => if (executor == null) { logError("Received KillTask command but executor was null") exitExecutor(1) } else { executor.killTask(taskId, interruptThread) } case StopExecutor => stopping.set(true) logInfo("Driver commanded a shutdown") // Cannot shutdown here because an ack may need to be sent back to the caller. So send // a message to self to actually do the shutdown. self.send(Shutdown) case Shutdown => stopping.set(true) new Thread("CoarseGrainedExecutorBackend-stop-executor") { override def run(): Unit = { // executor.stop() will call `SparkEnv.stop()` which waits until RpcEnv stops totally. // However, if `executor.stop()` runs in some thread of RpcEnv, RpcEnv won't be able to // stop until `executor.stop()` returns, which becomes a dead-lock (See SPARK-14180). // Therefore, we put this line in a new thread. executor.stop() } }.start() }
最后一個類SparkDeploySchedulerBackend(start):
var driverEndpoint: RpcEndpointRef = null protected def minRegisteredRatio: Double = _minRegisteredRatio override def start() { val properties = new ArrayBuffer[(String, String)] for ((key, value) <- scheduler.sc.conf.getAll) { if (key.startsWith("spark.")) { properties += ((key, value)) } } // TODO (prashant) send conf instead of properties driverEndpoint = createDriverEndpointRef(properties) } protected def createDriverEndpointRef( properties: ArrayBuffer[(String, String)]): RpcEndpointRef = { rpcEnv.setupEndpoint(ENDPOINT_NAME, createDriverEndpoint(properties)) } protected def createDriverEndpoint(properties: Seq[(String, String)]): DriverEndpoint = { new DriverEndpoint(rpcEnv, properties) }
2.4調度模塊:
2.4.1作業調度簡介
DAGScheduler: 根據Job構建基於Stage的DAG(Directed Acyclic Graph有向無環圖),並提交Stage給TASkScheduler。 其划分Stage的依據是RDD之間的依賴的關系找出開銷最小的調度方法,如下圖
注:從最后一個Stage開始倒推,如果有依賴關系 就先解決父節點,如果沒有依賴關系 就直接運行;這里做了一個簡單的實驗:Spark DAGSheduler生成Stage過程分析實驗
2.4.2 任務調度簡介:
TaskSchedulter: 將TaskSet提交給worker運行,每個Executor運行什么Task就是在此處分配的. TaskScheduler維護所有TaskSet,當Executor向Driver發生心跳時,TaskScheduler會根據資源剩余情況分配相應的Task。
另外TaskScheduler還維護着所有Task的運行標簽,重試失敗的Task。下圖展示了TaskScheduler的作用
在不同運行模式中任務調度器具體為:
-
- Spark on Standalone模式為TaskScheduler
- YARN-Client模式為YarnClientClusterScheduler
- YARN-Cluster模式為YarnClusterScheduler
3.運行模式
3.1 standalone模式
- Standalone模式使用Spark自帶的資源調度框架
- 采用Master/Slaves的典型架構,選用ZooKeeper來實現Master的HA
- 框架結構圖如下:
- 該模式主要的節點有Client節點、Master節點和Worker節點。其中Driver既可以運行在Master節點上中,也可以運行在本地Client端。當用spark-shell交互式工具提交Spark的Job時,Driver在Master節點上運行;當使用spark-submit工具提交Job或者在Eclips、IDEA等開發平台上使用”new SparkConf.setManager(“spark://master:7077”)”方式運行Spark任務時,Driver是運行在本地Client端上的
- 運行過程如下圖:(參考至)
- SparkContext連接到Master,向Master注冊並申請資源(CPU Core 和Memory)
- Master根據SparkContext的資源申請要求和Worker心跳周期內報告的信息決定在哪個Worker上分配資源,然后在該Worker上獲取資源,然后啟動StandaloneExecutorBackend;
- StandaloneExecutorBackend向SparkContext注冊;
- SparkContext將Applicaiton代碼發送給StandaloneExecutorBackend;並且SparkContext解析Applicaiton代碼,構建DAG圖,並提交給DAG Scheduler分解成Stage(當碰到Action操作時,就會催生Job;每個Job中含有1個或多個Stage,Stage一般在獲取外部數據和shuffle之前產生),然后以Stage(或者稱為TaskSet)提交給Task Scheduler,Task Scheduler負責將Task分配到相應的Worker,最后提交給StandaloneExecutorBackend執行;
- StandaloneExecutorBackend會建立Executor線程池,開始執行Task,並向SparkContext報告,直至Task完成
- 所有Task完成后,SparkContext向Master注銷,釋放資源
4 RDD實戰
sc.makeRDD(Seq("arachis","tony","lily","tom")).map{ name => (name.charAt(0),name) }.groupByKey().mapValues{ names => names.toSet.size //unique and count }.collect()
提交Job collect
划分Stage
提交Stage , 開始Task 運行調度
Stage0的DAG圖,makeRDD => map ; 相應生成了兩個RDD:ParallelCollectionRDD,MapPartitionsRDD
Stage1 的DAG圖,groupByKey => mapValues; 相應生成兩個RDD:ShuffledRDD, MapPartitionsRDD
- 將這些術語串起來的運行層次圖如下:
- Job=多個stage,Stage=多個同種task, Task分為ShuffleMapTask和ResultTask,Dependency分為ShuffleDependency和NarrowDependency
鏈接:
Spark官網:http://spark.apache.org/docs/latest/cluster-overview.html
http://www.cnblogs.com/tgzhu/p/5818374.html