先用caffe對cifar10進行訓練,將訓練的結果模型進行保存,得到一個caffemodel,然后從測試圖片中選出一張進行測試,並進行可視化。
In [1]:
#加載必要的庫
import numpy as np import matplotlib.pyplot as plt %matplotlib inline import sys,os,caffe
In [2]:
#設置當前目錄,判斷模型是否訓練好
caffe_root = '/home/bnu/caffe/' sys.path.insert(0, caffe_root + 'python') os.chdir(caffe_root) if not os.path.isfile(caffe_root + 'examples/cifar10/cifar10_quick_iter_4000.caffemodel'): print("caffemodel is not exist...")
In [3]:
#利用提前訓練好的模型,設置測試網絡
caffe.set_mode_gpu() net = caffe.Net(caffe_root + 'examples/cifar10/cifar10_quick.prototxt', caffe_root + 'examples/cifar10/cifar10_quick_iter_4000.caffemodel', caffe.TEST)
In [4]:
net.blobs['data'].data.shape
Out[4]:
In [5]:
#加載測試圖片,並顯示
im = caffe.io.load_image('examples/images/32.jpg') print im.shape plt.imshow(im) plt.axis('off')
Out[5]:
In [6]:
# 編寫一個函數,將二進制的均值轉換為python的均值
def convert_mean(binMean,npyMean): blob = caffe.proto.caffe_pb2.BlobProto() bin_mean = open(binMean, 'rb' ).read() blob.ParseFromString(bin_mean) arr = np.array( caffe.io.blobproto_to_array(blob) ) npy_mean = arr[0] np.save(npyMean, npy_mean ) binMean=caffe_root+'examples/cifar10/mean.binaryproto' npyMean=caffe_root+'examples/cifar10/mean.npy' convert_mean(binMean,npyMean)
In [7]:
#將圖片載入blob中,並減去均值
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) transformer.set_mean('data', np.load(npyMean).mean(1).mean(1)) # 減去均值 transformer.set_raw_scale('data', 255) transformer.set_channel_swap('data', (2,1,0)) net.blobs['data'].data[...] = transformer.preprocess('data',im) inputData=net.blobs['data'].data
In [8]:
#顯示減去均值前后的數據
plt.figure() plt.subplot(1,2,1),plt.title("origin") plt.imshow(im) plt.axis('off') plt.subplot(1,2,2),plt.title("subtract mean") plt.imshow(transformer.deprocess('data', inputData[0])) plt.axis('off')
Out[8]:
In [9]:
#運行測試模型,並顯示各層數據信息
net.forward() [(k, v.data.shape) for k, v in net.blobs.items()]
Out[9]:
In [10]:
#顯示各層的參數信息
[(k, v[0].data.shape) for k, v in net.params.items()]
Out[10]:
In [11]:
# 編寫一個函數,用於顯示各層數據
def show_data(data, padsize=1, padval=0): data -= data.min() data /= data.max() # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3) data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.figure() plt.imshow(data,cmap='gray') plt.axis('off') plt.rcParams['figure.figsize'] = (8, 8) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray'
In [12]:
#顯示第一個卷積層的輸出數據和權值(filter)
show_data(net.blobs['conv1'].data[0]) print net.blobs['conv1'].data.shape show_data(net.params['conv1'][0].data.reshape(32*3,5,5)) print net.params['conv1'][0].data.shape
In [13]:
#顯示第一次pooling后的輸出數據
show_data(net.blobs['pool1'].data[0]) net.blobs['pool1'].data.shape
Out[13]:
In [14]:
#顯示第二次卷積后的輸出數據以及相應的權值(filter)
show_data(net.blobs['conv2'].data[0],padval=0.5) print net.blobs['conv2'].data.shape show_data(net.params['conv2'][0].data.reshape(32**2,5,5)) print net.params['conv2'][0].data.shape
In [15]:
#顯示第三次卷積后的輸出數據以及相應的權值(filter),取前1024個進行顯示
show_data(net.blobs['conv3'].data[0],padval=0.5) print net.blobs['conv3'].data.shape show_data(net.params['conv3'][0].data.reshape(64*32,5,5)[:1024]) print net.params['conv3'][0].data.shape
In [16]:
#顯示第三次池化后的輸出數據
show_data(net.blobs['pool3'].data[0],padval=0.2) print net.blobs['pool3'].data.shape
In [17]:
# 最后一層輸入屬於某個類的概率
feat = net.blobs['prob'].data[0] print feat plt.plot(feat.flat)
Out[17]:
從輸入的結果和圖示來看,最大的概率是7.17785358e-01,屬於第5類(標號從0開始)。與cifar10中的10種類型名稱進行對比:
airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck
根據測試結果,判斷為dog。 測試無誤!
原文見:http://www.cnblogs.com/denny402/p/5105911.html