深入理解按位異或運算符


異或運算:

首先異或表示當兩個數的二進制表示,進行異或運算時,當前位的兩個二進制表示不同則為1相同則為0.該方法被廣泛推廣用來統計一個數的1的位數!

參與運算的兩個值,如果兩個相應bit位相同,則結果為0,否則為1。
即:
  0^0 = 0, 
  1^0 = 1, 
  0^1 = 1, 
  1^1 = 0
按位異或的3個特點:
(1) 0^0=0,0^1=1  0異或任何數=任何數
(2) 1^0=1,1^1=0  1異或任何數-任何數取反
(3) 任何數異或自己=把自己置0
按位異或的幾個常見用途:
(1) 使某些特定的位翻轉
    例如對數10100001的第2位和第3位翻轉,則可以將該數與00000110進行按位異或運算。
       10100001^00000110 = 10100111

(2) 實現兩個值的交換,而不必使用臨時變量。
    例如交換兩個整數a=10100001,b=00000110的值,可通過下列語句實現:
    a = a^b;   //a=10100111
    b = b^a;   //b=10100001
    a = a^b;   //a=00000110

位運算

位運算時把數字用二進制表示之后,對每一位上0或者1的運算。理解位運算的第一步是理解二進制。二進制是指數字的每一位都是0或者1.比如十進制的2轉化為二進制之后就是10。

其實二進制的運算並不是很難掌握,因為位運算總共只有5種運算:與、或、異或、左移、右移。如下表:

 

與(&) 0 & 0 = 0 1 & 0 = 0 0 & 1 = 0 1 & 1 = 1
或(|) 0 | 0 = 0 1 | 0 = 1 0 | 1 = 1 1 | 1 = 1
異或(^) 0 ^ 0 = 0 1 ^ 0 = 1 0 ^ 1 = 1 1 ^ 1 = 0

左移運算

  左移運算符m<<n表示吧m左移n位。左移n位的時候,最左邊的n位將被丟棄,同時在最右邊補上n個0.比如:

00001010 << 2 = 00101000

10001010 << 3 = 01010000

右移運算

  右移運算符m>>n表示把m右移n位。右移n位的時候,最右邊的n位將被丟棄。但右移時處理最左邊位的情形要稍微復雜一點。這里要特別注意,如果數字是一個無符號數值,則用0填補最左邊的n位。如果數字是一個有符號數值,則用數字的符號位填補最左邊的n位。也就是說如果數字原先是一個正數,則右移之后再最左邊補n個0;如果數字原先是負數,則右移之后在最左邊補n個1.下面是堆兩個8位有符號數作右移的例子:

00001010 >> 2 = 00000010

10001010 >> 3 = 11110001

  關於移位的運算有這樣的等價關系:把整數右移一位和把整數除以2在數學上是等價的。

a << = 1 ; //a左移一位等效於a = a * 2;

a << = 2 ; //a左移2位等效於a = a * 2的2次方(4);

   計算機內部只識別1、0,十進制需變成二進制才能使用移位運算符<<,>> 。

int j = 8;
p = j << 1;
cout<<p<<endl;

在這里,8左移一位就是8*2的結果16 。

  移位運算是最有效的計算乘/除乘法的運算之一

  按位與(&)其功能是參與運算的兩數各對應的二進制位相與。只有對應的兩個二進制位均為1時,結果位才為1,否則為0 。參與運算的數以補碼方式出現。

先舉一個例子如下:

  題目:請實現一個函數,輸入一個正數,輸出該數二進制表示中1的個數。

[cpp]  view plain  copy
 
  1. int count(BYTE n)  
  2. {  
  3.     int num = 0;  
  4.     while(n){  
  5.         n &= (n - 1);  
  6.         num++;  
  7.     }  
  8.     return num;  
  9. }  

  這里用到了這樣一個知識點:把一個整數減去1,再和原整數做與運算,會把該整數最右邊一個1變成0 。 那么一個整數的二進制表示中有多少個1,就可以進行多少次這樣的操作。

  總結:把一個整數減去1之后再和原來的整數做位與運算,得到的結果相當於是把整數的二進制表示中的最右邊一個1變成0 。

位運算的應用可以運用於很多場合:

  1. 清零特定位(mask中特定位置0,其它位為1 , s = s & mask)。
  2. 取某數中指定位(mask中特定位置,其它位為0, s = s & mask)。

舉例:輸入兩個整數m和n,計算需要改變m的二進制表示中的多少位才能得到n。

解決方法:第一步,求這兩個數的異或;第二步,統計異或結果中1的位數。

[cpp]  view plain  copy
 
  1. <span style="font-size:18px">#include<iostream>  
  2. using namespace std;  
  3.   
  4. int main()  
  5. {  
  6.     int a = 10 , b =13 , count = 0;  
  7.     int c;  
  8.     c = a ^ b;  
  9.     while(c){  
  10.         c &= (c - 1);  
  11.         count++;  
  12.     }  
  13.     cout<<count<<endl;  
  14.   
  15.     return 0;  
  16. }</span>  


 接下來我們再舉一例,就可以更好的說明移位運算了:用一條語句判斷一個整數是不是2的整數次方。

解決方法:一個整數如果是2的整數次方,那么它的二進制表示中有且只有一位是1,而其它所有位都是0 。 根據前面的分析,把這個整數減去1后再和它自己做與運算,這個整數中唯一的1就變成0了。

解答:!(x & (x - 1))


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM