backgroud
Snowflake is a network service for generating unique ID numbers at high scale with some simple guarantees.
簡介
對於一個較大的訂購業務場景,我們往往需要能夠生成一個全局的唯一的訂單號,如何在多個集群,多個節點高效生成唯一訂單號?我們參考了Twitter的snowflake算法。
snowflake最初由Twitter開發,用的scala,對於Twitter而言,必須滿足每秒上萬條消息的請求,並且每條消息能夠分配一個全局唯一的ID,因此,ID生成服務要求必須滿足高性能(>10K ids/s)、低延遲(<2ms)、高可用的特性,同時生成的ID還可以進行大致的排序,以方便客戶端的排序。
Snowflake滿足了以上的需求。Snowflake生成的每一個ID都是64位的整型數,它的核心算法也比較簡單高效,結構如下:
-
41位的時間序列,精確到毫秒級,41位的長度可以使用69年。時間位還有一個很重要的作用是可以根據時間進行排序。
-
10位的機器標識,10位的長度最多支持部署1024個節點。
-
12位的計數序列號,序列號即一系列的自增id,可以支持同一節點同一毫秒生成多個ID序號,12位的計數序列號支持每個節點每毫秒產生4096個ID序號。
-
最高位是符號位,始終為0,不可用。
原生算法java實現
/**
* 摘自網上某blog,記不得地址了。。
* @Project concurrency
* Created by wgy on 16/7/19.
*/
public class IdGen {
private long workerId;
private long datacenterId;
private long sequence = 0L;
private long twepoch = 1288834974657L; //Thu, 04 Nov 2010 01:42:54 GMT
private long workerIdBits = 5L; //節點ID長度
private long datacenterIdBits = 5L; //數據中心ID長度
private long maxWorkerId = -1L ^ (-1L << workerIdBits); //最大支持機器節點數0~31,一共32個
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); //最大支持數據中心節點數0~31,一共32個
private long sequenceBits = 12L; //序列號12位
private long workerIdShift = sequenceBits; //機器節點左移12位
private long datacenterIdShift = sequenceBits + workerIdBits; //數據中心節點左移17位
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; //時間毫秒數左移22位
private long sequenceMask = -1L ^ (-1L << sequenceBits); //4095
private long lastTimestamp = -1L;
private static class IdGenHolder {
private static final IdGen instance = new IdGen();
}
public static IdGen get(){
return IdGenHolder.instance;
}
public IdGen() {
this(0L, 0L);
}
public IdGen(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
public synchronized long nextId() {
long timestamp = timeGen(); //獲取當前毫秒數
//如果服務器時間有問題(時鍾后退) 報錯。
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果上次生成時間和當前時間相同,在同一毫秒內
if (lastTimestamp == timestamp) {
//sequence自增,因為sequence只有12bit,所以和sequenceMask相與一下,去掉高位
sequence = (sequence + 1) & sequenceMask;
//判斷是否溢出,也就是每毫秒內超過4095,當為4096時,與sequenceMask相與,sequence就等於0
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp); //自旋等待到下一毫秒
}
} else {
sequence = 0L; //如果和上次生成時間不同,重置sequence,就是下一毫秒開始,sequence計數重新從0開始累加
}
lastTimestamp = timestamp;
// 最后按照規則拼出ID。
// 000000000000000000000000000000000000000000 00000 00000 000000000000
// time datacenterId workerId sequence
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
}
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
protected long timeGen() {
return System.currentTimeMillis();
}
}
注釋已經寫的比較詳細了,不做特別的說明。
訂購業務唯一訂單號實現
對於訂購業務而言,雖然可以記錄訂單的創建時間,但是一般都需要帶有顯示的時間戳屬性。因此,一個long型已無法滿足實際的需求,將輸出修改為String類型,前17位用於存儲yyyyMMddHHMMssSSS格式的時間,后面用於記錄所在集群,節點,以及自增量。
import org.apache.commons.lang.time.DateFormatUtils;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.Date;
/**
* 與snowflake算法區別,返回字符串id,占用更多字節,但直觀從id中看出生成時間
*
* @Project concurrency
* Created by wgy on 16/7/19.
*/
public enum IdGenerator {
INSTANCE;
private long workerId; //用ip地址最后幾個字節標示
private long datacenterId = 0L; //可配置在properties中,啟動時加載,此處默認先寫成0
private long sequence = 0L;
private long workerIdBits = 8L; //節點ID長度
private long datacenterIdBits = 2L; //數據中心ID長度,可根據時間情況設定位數
private long sequenceBits = 12L; //序列號12位
private long workerIdShift = sequenceBits; //機器節點左移12位
private long datacenterIdShift = sequenceBits + workerIdBits; //數據中心節點左移14位
private long sequenceMask = -1L ^ (-1L << sequenceBits); //4095
private long lastTimestamp = -1L;
IdGenerator(){
workerId = 0x000000FF & getLastIP();
}
public synchronized String nextId() {
long timestamp = timeGen(); //獲取當前毫秒數
//如果服務器時間有問題(時鍾后退) 報錯。
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果上次生成時間和當前時間相同,在同一毫秒內
if (lastTimestamp == timestamp) {
//sequence自增,因為sequence只有12bit,所以和sequenceMask相與一下,去掉高位
sequence = (sequence + 1) & sequenceMask;
//判斷是否溢出,也就是每毫秒內超過4095,當為4096時,與sequenceMask相與,sequence就等於0
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp); //自旋等待到下一毫秒
}
} else {
sequence = 0L; //如果和上次生成時間不同,重置sequence,就是下一毫秒開始,sequence計數重新從0開始累加
}
lastTimestamp = timestamp;
long suffix = (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
String datePrefix = DateFormatUtils.format(timestamp, "yyyyMMddHHMMssSSS");
return datePrefix + suffix;
}
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
protected long timeGen() {
return System.currentTimeMillis();
}
private byte getLastIP(){
byte lastip = 0;
try{
InetAddress ip = InetAddress.getLocalHost();
byte[] ipByte = ip.getAddress();
lastip = ipByte[ipByte.length - 1];
} catch (UnknownHostException e) {
e.printStackTrace();
}
return lastip;
}
}
測試
測試環境
- macbook Pro 2.4 GHz Intel Core i5 4 GB 1600 MHz DDR3
-
10個線程,每個線程生成5w個
需2000ms左右,測試代碼如下:
測試代碼
@Test
public void testNextId() throws Exception {
final IdGenerator idg = IdGenerator.INSTANCE;
ExecutorService es = Executors.newFixedThreadPool(10);
final HashSet idSet = new HashSet();
Collections.synchronizedCollection(idSet);
long start = System.currentTimeMillis();
System.out.println(" start generate id *");
for (int i = 0; i < 10; i++)
es.execute(new Runnable() {
public void run() {
for (int j = 0; j < 50000; j++) {
String id= idg.nextId();
synchronized (idSet){
idSet.add(id);
}
}
}
});
es.shutdown();
es.awaitTermination(10, TimeUnit.SECONDS);
long end = System.currentTimeMillis();
System.out.println(" end generate id ");
System.out.println("* cost " + (end-start) + " ms!");
Assert.assertEquals(10 * 50000, idSet.size());
}
測試結果
start generate id *
end generate id *
* cost 2091 ms!
