cats是scala的一個新的函數式編程工具庫,其設計原理基本繼承了scalaz:大家都是haskell typeclass的scala版實現。當然,cats在scalaz的基礎上從實現細節、庫組織結構和調用方式上進行了一些優化,所以對用戶來說:cats的基礎數據類型、數據結構在功能上與scalaz是大致相同的,可能有一些語法上的變化。與scalaz著名抽象、復雜的語法表現形式相比,cats的語法可能更形象、簡單直白。在scalaz的學習過程中,我們了解到所謂函數式編程就是monadic Programming:即用monad這樣的數據類型來構建程序。而實際可行的monadic programming就是用Free-Monad編程了。因為Free-Monad程序是真正可運行的,或者說是可以實現安全運行的,因為它可以保證在固定的堆棧內實現無限運算。我們知道:函數式編程模式的運行方式以遞歸算法為主,flatMap函數本身就是一種遞歸算法。這就預示着monadic programming很容易造成堆棧溢出問題(StackOverflowError)。當我們把普通的泛函類型F[A]升格成Free-Monad后就能充分利用Free-Monad安全運算能力來構建實際可運行的程序了。由於我們在前面已經詳細的了解了scalaz的大部分typeclass,包括Free,對cats的討論就從Free開始,聚焦在cats.Free編程模式方面。同時,我們可以在使用cats.Free的過程中對cats的其它數據類型進行補充了解。
cats.Free的類型款式如下:
sealed abstract class Free[S[_], A] extends Product with Serializable {...}
S是個高階類,就是一種函數式運算。值得注意的是:現在S不需要是個Functor了。因為Free的一個實例Suspend類型是這樣的:
/** Suspend the computation with the given suspension. */
private final case class Suspend[S[_], A](a: S[A]) extends Free[S, A]
我們不需要map就可以把F[A]升格成Free
/** * Suspend a value within a functor lifting it to a Free. */ def liftF[F[_], A](value: F[A]): Free[F, A] = Suspend(value)
我們在scalaz.Free的討論中並沒能詳盡地分析在什么情況下S[_]必須是個Functor。下面我們需要用一些篇幅來解析。
Free程序的特點是算式(description)/算法(implementation)關注分離(separation of concern):我們用一組數據類型來模擬一種編程語句ADT(algebraic data type),這一組ADT就形成了一種定制的編程語言DSL(domain specific language)。Free的編程部分就是用DSL來描述程序功能(description of purpose),即算式了。算法即用DSL描述的功能的具體實現,可以有多種的功能實現方式。我們先看個簡單的DSL:
1 import cats.free._ 2 import cats.Functor 3 object catsFree { 4 object ADTs { 5 sealed trait Interact[+A] 6 object Interact { 7 case class Ask(prompt: String) extends Interact[String] 8 case class Tell(msg: String) extends Interact[Unit] 9
10 def ask(prompt: String): Free[Interact,String] = Free.liftF(Ask(prompt)) 11 def tell(msg: String): Free[Interact,Unit] = Free.liftF(Tell(msg)) 12
13
14 implicit object interactFunctor extends Functor[Interact] { 15 def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ???
16 /* ia match { 17 case Ask(p) => ??? 18 case Tell(m) => ??? 19 } */
20 } 21 } 22 } 23 object DSLs { 24 import ADTs._ 25 import Interact._ 26 val prg: Free[Interact,Unit] = for { 27 first <- ask("What's your first name?") 28 last <- ask("What's your last name?") 29 _ <- tell(s"Hello $first $last") 30 } yield() 31 }
在這個例子里Interact並不是一個Functor,因為我們無法獲取Interact Functor實例的map函數。先讓我們分析一下Functor的map:
1 implicit object interactFunctor extends Functor[Interact] { 2 def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ia match { 3 case Ask(p) => ???
4 case Tell(m) => ???
5 } 6 }
map的作用是用一個函數A => B把F[A]轉成F[B]。也就是把語句狀態從F[A]轉成F[B],但在Interact的情況里F[B]已經是明確的Interact[Unit]和Interact[String]兩種狀態,而map的f是A => B,在上面的示范里我們該如何施用f來獲取這個Interact[B]呢?從上面的示范里我們觀察可以得出Ask和Tell這兩個ADT純粹是為了模擬ask和tell這兩個函數。ask和tell分別返回Free版本的String,Unit結果。可以說:Interact並沒有轉換到下一個狀態的要求。那么假如我們把ADT調整成下面這樣呢:
1 sealed trait FunInteract[NS] 2 object FunInteract { 3 case class FunAsk[NS](prompt: String, onInput: String => NS) extends FunInteract[NS] 4 case class FunTell[NS](msg: String, ns: NS) extends FunInteract[NS] 5
6 def funAsk(prompt: String): Free[FunInteract,String] = Free.liftF(FunAsk(prompt,identity)) 7 def funAskInt(prompt: String): Free[FunInteract,Int] = Free.liftF(FunAsk(prompt,_.toInt)) 8 def funTell(msg: String): Free[FunInteract,Unit] = Free.liftF(FunTell(msg,())) 9
10 implicit object funInteract extends Functor[FunInteract] { 11 def map[A,NS](fa: FunInteract[A])(f: A => NS) = fa match { 12 case FunAsk(prompt,input) => FunAsk(prompt,input andThen f) 13 case FunTell(msg,ns) => FunTell(msg,f(ns)) 14 } 15 } 16 }
現在這兩個ADT是有類型參數NS的了:FunAsk[NS],FunTell[NS]。NS代表了ADT當前類型,如FunAsk[Int]、FunTell[String]...,現在這兩個ADT都通過類型參數NS變成了可map的對象了,如FunAsk[String] >>> FunAsk[String], FunAsk[String] >>> FunAsk[Int]...。所以我們可以很順利的實現object funInteract的map函數。但是,一個有趣的現象是:為了實現這種狀態轉換,如果ADT需要返回操作結果,就必須具備一個引領狀態轉換的機制,如FunAsk類型里的onInput: String => NS:它代表funAsk函數返回的結果可以指向下一個狀態。新增函數funAskInt是個很好的示范:通過返回的String結果將狀態轉換到FunAsk[Int]狀態。函數funTell不返回結果,所以FunTell沒有狀態轉換機制。scalaz舊版本Free.Suspend的類型款式是:Suspend[F[Free,A]],這是一個遞歸類型,內部的Free代表下一個狀態。由於我們必須用F.map才能取出下一個狀態,所以F必須是個Functor。我們應該注意到如果ADT是Functor的話會造成Free程序的冗余代碼。既然cats.Free對F[A]沒有設置Functor門檻,那么我們應該盡量避免使用Functor。
得出對ADT類型要求結論后,我們接着示范cats的Free編程。下面是Free程序的功能實現interpret部分(implementation):
1 import ADTs._ 2 object iconsole extends (Interact ~> Id) { 3 def apply[A](ia: Interact[A]): Id[A] = ia match { 4 case Ask(p) => {println(p); readLine} 5 case Tell(m) => println(m) 6 } 7 } 8 }
DSL程序的功能實現就是把ADT F[A]對應到實際的指令集G[A],在Free編程里用NaturalTransformation ~>來實現。注意G[A]必須是個Monad。在上面的例子里對應關系是:Interact~>Id,代表直接對應到運算指令println和readLine。我們也可以實現另一個版本:
1 type Prompt = String 2 type Reply = String 3 type Message = String 4 type Tester[A] = Map[Prompt,Reply] => (List[Message],A) 5 object tester extends (Interact ~> Tester) { 6 def apply[A](ia: Interact[A]): Tester[A] = ia match { 7 case Ask(p) => { m => (List(), m(p)) } 8 case Tell(m) => { _ => (List(m), ()) } 9 } 10 } 11 import cats.Monad 12 implicit val testerMonad = new Monad[Tester] { 13 override def pure[A](a: A): Tester[A] = _ => (List(),a) 14 override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => { 15 val (o1,a1) = ta(m) 16 val (o2,a2) = f(a1)(m) 17 (o1 ++ o2, a2) 18 } 19 override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =
20 defaultTailRecM(a)(f) 21 } 22 }
上面是個模擬測試:我們用個Map[K,V]來模擬互動,K模擬問prompt,V模擬獲取回答Input。測試方式是個Function1,輸入測試數據Map,在List[Message]里返回所有Tell產生的信息。上面提到過Tester[A]必須是個Monad,所以我們實現了Tester的Monad實例testMonad。實際上 m=>(List,a)就是個writer函數。所謂的Writer就是包嵌一個對值pair(L,V)的Monad,L代表Log,V代表運算值。Writer的特性就是log所有V的運算過程。我們又可以用Writer來實現這個tester:
1 import cats.data.WriterT 2 type WF[A] = Map[Prompt,Reply] => A 3 type WriterTester[A] = WriterT[WF,List[Message],A] 4 def testerToWriter[A](f: Map[Prompt,Reply] => (List[Message],A)) =
5 WriterT[WF,List[Message],A](f) 6 object testWriter extends (Interact ~> WriterTester) { 7 import Interact._ 8 def apply[A](ia: Interact[A]): WriterTester[A] = ia match { 9 case Ask(p) => testerToWriter(m => (List(),m(p))) 10 case Tell(m) => testerToWriter(_ => (List(m),())) 11 } 12 }
如果我們用Writer來實現Interact,實際上就是把Ask和Tell都升格成Writer類型。
我們再來看看在cats里是如何運算Free DSL程序的。相對scalaz而言,cats的運算函數簡單的多,就一個foldMap,我們來看看它的定義:
/** * Catamorphism for `Free`. * * Run to completion, mapping the suspension with the given * transformation at each step and accumulating into the monad `M`. * * This method uses `tailRecM` to provide stack-safety. */ final def foldMap[M[_]](f: FunctionK[S, M])(implicit M: Monad[M], r: RecursiveTailRecM[M]): M[A] = r.sameType(M).tailRecM(this)(_.step match { case Pure(a) => M.pure(Right(a)) case Suspend(sa) => M.map(f(sa))(Right(_)) case FlatMapped(c, g) => M.map(c.foldMap(f))(cc => Left(g(cc))) })
除了要求M是個Monad之外,cats還要求M的RecursiveTailRecM隱式實例。那么什么是RecursiveTailRecM呢:
/** * This is a marker type that promises that the method * .tailRecM for this type is stack-safe for arbitrary recursion. */ trait RecursiveTailRecM[F[_]] extends Serializable { /* * you can call RecursiveTailRecM[F].sameType(Monad[F]).tailRec * to have a static check that the types agree * for safer usage of tailRecM */ final def sameType[M[_[_]]](m: M[F]): M[F] = m }
我們用RecursiveTailRecM來保證這個Monad類型與tailRecM是匹配的,這是一種運算安全措施,所以在foldMap函數里r.sameType(M).tailRecM保證了tailRecM不會造成StackOverflowError。cats.Free里還有一種不需要類型安全檢驗的函數foldMapUnsafe:
/** * Same as foldMap but without a guarantee of stack safety. If the recursion is shallow * enough, this will work */ final def foldMapUnsafe[M[_]](f: FunctionK[S, M])(implicit M: Monad[M]): M[A] = foldMap[M](f)(M, RecursiveTailRecM.create)
這個函數不需要RecursiveTailRecM。下面我們選擇能保證運算安全的方法來運算tester:首先我們需要Tester類型的Monad和RecursiveTailRecM實例:
1 import cats.Monad 2 implicit val testerMonad = new Monad[Tester] with RecursiveTailRecM[Tester]{ 3 override def pure[A](a: A): Tester[A] = _ => (List(),a) 4 override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => { 5 val (o1,a1) = ta(m) 6 val (o2,a2) = f(a1)(m) 7 (o1 ++ o2, a2) 8 } 9 override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =
10 defaultTailRecM(a)(f) 11 }
然后我們制造一些測試數據:
1 val testData = Map("What's your first name?" -> "Tiger", 2 "What's your last name?" -> "Chan") //> testData : scala.collection.immutable.Map[String,String] = Map(What's your first name? -> Tiger, What's your last name? -> Chan)
測試運算:
1 import ADTs._,DSLs._,IMPLs._ 2 val testData = Map("What's your first name?" -> "Tiger", 3 "What's your last name?" -> "Chan") //> testData : scala.collection.immutable.Map[String,String] = Map(What's your first name? -> Tiger, What's your last name? -> Chan)
4 val prgRunner = prg.foldMap(tester) //> prgRunner : demo.ws.catsFree.IMPLs.Tester[Unit] = <function1>
5 prgRunner(testData) //> res0: (List[demo.ws.catsFree.IMPLs.Message], Unit) = (List(Hello Tiger Chan),())
那么如果運算testWriter呢?我們先取得WriterT的Monad實例:
1 implicit val testWriterMonad = WriterT.catsDataMonadWriterForWriterT[WF,List[Message]]
然后構建一個RecursiveTailRecM實例后再用同樣的測試數據來運算:
1 implicit val testWriterRecT = new RecursiveTailRecM[WriterTester]{} 2 //> testWriterRecT : cats.RecursiveTailRecM[demo.ws.catsFree.IMPLs.WriterTester] = demo.ws.catsFree$$anonfun$main$1$$anon$2@6093dd95
3 val prgRunner = prg.foldMap(testWriter) //> prgRunner : demo.ws.catsFree.IMPLs.WriterTester[Unit] = WriterT(<function1>)
4 prgRunner.run(testData)._1.map(println) //> Hello Tiger Chan 5 //| res0: List[Unit] = List(())
運算結果一致。
我們再示范一下cats官方文件里關於free monad例子:模擬一個KVStore的put,get,delete功能。ADT設計如下:
1 object ADTs { 2 sealed trait KVStoreA[+A] 3 case class Put[T](key: String, value: T) extends KVStoreA[Unit] 4 case class Get[T](key: String) extends KVStoreA[Option[T]] 5 case class Del(key: String) extends KVStoreA[Unit] 6 }
對應的模擬功能函數設計如下:
1 type KVStore[A] = Free[KVStoreA,A] 2 object KVStoreA { 3 def put[T](key: String, value: T): KVStore[Unit] =
4 Free.liftF[KVStoreA,Unit](Put[T](key,value)) 5 def get[T](key: String): KVStore[Option[T]] =
6 Free.liftF[KVStoreA,Option[T]](Get[T](key)) 7 def del(key: String): KVStore[Unit] =
8 Free.liftF[KVStoreA,Unit](Del(key)) 9 def mod[T](key: String, f: T => T): KVStore[Unit] =
10 for { 11 opt <- get[T](key) 12 _ <- opt.map {t => put[T](key,f(t))}.getOrElse(Free.pure(())) 13 } yield() 14 }
注意一下mod函數:它是由基礎函數get和put組合而成。我們要求所有在for內的類型為Free[KVStoreA,?],所以當f函數施用后如果opt變成None時就返回結果Free.pure(()),它的類型是:Free[Nothing,Unit],Nothing是KVStoreA的子類。
現在我們可以用這個DSL來編制KVS程序了:
1 object DSLs { 2 import ADTs._ 3 import KVStoreA._ 4 def prg: KVStore[Option[Int]] = 5 for { 6 _ <- put[Int]("wild-cats", 2) 7 _ <- mod[Int]("wild-cats", (_ + 12)) 8 _ <- put[Int]("tame-cats", 5) 9 n <- get[Int]("wild-cats") 10 _ <- del("tame-cats") 11 } yield n 12 }
我們可以通過State數據結純代碼(pure code)方式來實現用immutable map的KVStore:
1 object IMPLs { 2 import ADTs._ 3 import cats.{~>} 4 import cats.data.State 5
6 type KVStoreState[A] = State[Map[String, Any], A] 7 val kvsToState: KVStoreA ~> KVStoreState = new (KVStoreA ~> KVStoreState) { 8 def apply[A](fa: KVStoreA[A]): KVStoreState[A] =
9 fa match { 10 case Put(key, value) => State { (s:Map[String, Any]) =>
11 (s.updated(key, value),()) } 12 case Get(key) => State { (s:Map[String, Any]) =>
13 (s,s.get(key).asInstanceOf[A]) } 14 case Del(key) => State { (s:Map[String, Any]) =>
15 (s - key, (())) } 16 } 17 } 18 }
我們把KVStoreA ADT模擬成對State結構的S轉換(mutation),返回State{S=>(S,A)}。KVStoreState[A]類型的S參數為immutable.Map[String, Any],所以我們在S轉換操作時用immutable map的操作函數來構建新的map返回,典型的pure code。我們來運算一下KVStoreA程序:
1 import ADTs._,DSLs._,IMPLs._ 2 val prgRunner = prg.foldMap(kvsToState) //> prgRunner : demo.ws.catsFreeKVS.IMPLs.KVStoreState[Option[Int]] = cats.data.StateT@2cfb4a64
3 prgRunner.run(Map.empty).value //> res0: (Map[String,Any], Option[Int]) = (Map(wild-cats -> 14),Some(14))
但是難道不需要Monad、RecursiveTailRecM實例了嗎?實際上cats已經提供了State的Monad和RecursiveTailRecM實例:
1 import cats.{Monad,RecursiveTailRecM} 2 implicitly[Monad[KVStoreState]] //> res1: cats.Monad[demo.ws.catsFreeKVS.IMPLs.KVStoreState] = cats.data.StateT Instances$$anon$2@71bbf57e
3 implicitly[RecursiveTailRecM[KVStoreState]] //> res2: cats.RecursiveTailRecM[demo.ws.catsFreeKVS.IMPLs.KVStoreState] = cats.RecursiveTailRecM$$anon$1@7f13d6e
在cats的StateT.scala里可以找到這段代碼:
private[data] sealed trait StateTInstances2 { implicit def catsDataMonadForStateT[F[_], S](implicit F0: Monad[F]): Monad[StateT[F, S, ?]] =
new StateTMonad[F, S] { implicit def F = F0 } implicit def catsDataRecursiveTailRecMForStateT[F[_]: RecursiveTailRecM, S]: RecursiveTailRecM[StateT[F, S, ?]] = RecursiveTailRecM.create[StateT[F, S, ?]] implicit def catsDataSemigroupKForStateT[F[_], S](implicit F0: Monad[F], G0: SemigroupK[F]): SemigroupK[StateT[F, S, ?]] =
new StateTSemigroupK[F, S] { implicit def F = F0; implicit def G = G0 } }
我把上面兩個示范的源代碼提供在下面:
Interact:
1 import cats.free._ 2 import cats.{Functor, RecursiveTailRecM} 3 object catsFree { 4 object ADTs { 5 sealed trait Interact[+A] 6 object Interact { 7 case class Ask(prompt: String) extends Interact[String] 8 case class Tell(msg: String) extends Interact[Unit] 9 10 def ask(prompt: String): Free[Interact,String] = Free.liftF(Ask(prompt)) 11 def tell(msg: String): Free[Interact,Unit] = Free.liftF(Tell(msg)) 12 13 14 implicit object interactFunctor extends Functor[Interact] { 15 def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ??? 16 /* ia match { 17 case Ask(p) => ??? 18 case Tell(m) => ??? 19 } */ 20 } 21 22 sealed trait FunInteract[NS] 23 object FunInteract { 24 case class FunAsk[NS](prompt: String, onInput: String => NS) extends FunInteract[NS] 25 case class FunTell[NS](msg: String, ns: NS) extends FunInteract[NS] 26 27 def funAsk(prompt: String): Free[FunInteract,String] = Free.liftF(FunAsk(prompt,identity)) 28 def funAskInt(prompt: String): Free[FunInteract,Int] = Free.liftF(FunAsk(prompt,_.toInt)) 29 def funTell(msg: String): Free[FunInteract,Unit] = Free.liftF(FunTell(msg,())) 30 31 implicit object funInteract extends Functor[FunInteract] { 32 def map[A,NS](fa: FunInteract[A])(f: A => NS) = fa match { 33 case FunAsk(prompt,input) => FunAsk(prompt,input andThen f) 34 case FunTell(msg,ns) => FunTell(msg,f(ns)) 35 } 36 } 37 } 38 } 39 } 40 object DSLs { 41 import ADTs._ 42 import Interact._ 43 val prg: Free[Interact,Unit] = for { 44 first <- ask("What's your first name?") 45 last <- ask("What's your last name?") 46 _ <- tell(s"Hello $first $last") 47 } yield() 48 } 49 object IMPLs { 50 import cats.{Id,~>} 51 import ADTs._ 52 import Interact._ 53 object iconsole extends (Interact ~> Id) { 54 def apply[A](ia: Interact[A]): Id[A] = ia match { 55 case Ask(p) => {println(p); readLine} 56 case Tell(m) => println(m) 57 } 58 } 59 60 type Prompt = String 61 type Reply = String 62 type Message = String 63 type Tester[A] = Map[Prompt,Reply] => (List[Message],A) 64 object tester extends (Interact ~> Tester) { 65 def apply[A](ia: Interact[A]): Tester[A] = ia match { 66 case Ask(p) => { m => (List(), m(p)) } 67 case Tell(m) => { _ => (List(m), ()) } 68 } 69 } 70 import cats.Monad 71 implicit val testerMonad = new Monad[Tester] with RecursiveTailRecM[Tester]{ 72 override def pure[A](a: A): Tester[A] = _ => (List(),a) 73 override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => { 74 val (o1,a1) = ta(m) 75 val (o2,a2) = f(a1)(m) 76 (o1 ++ o2, a2) 77 } 78 override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] = 79 defaultTailRecM(a)(f) 80 } 81 import cats.data.WriterT 82 import cats.instances.all._ 83 type WF[A] = Map[Prompt,Reply] => A 84 type WriterTester[A] = WriterT[WF,List[Message],A] 85 def testerToWriter[A](f: Map[Prompt,Reply] => (List[Message],A)) = 86 WriterT[WF,List[Message],A](f) 87 implicit val testWriterMonad = WriterT.catsDataMonadWriterForWriterT[WF,List[Message]] 88 object testWriter extends (Interact ~> WriterTester) { 89 import Interact._ 90 def apply[A](ia: Interact[A]): WriterTester[A] = ia match { 91 case Ask(p) => testerToWriter(m => (List(),m(p))) 92 case Tell(m) => testerToWriter(_ => (List(m),())) 93 } 94 } 95 } 96 97 import ADTs._,DSLs._,IMPLs._ 98 val testData = Map("What's your first name?" -> "Tiger", 99 "What's your last name?" -> "Chan") 100 //val prgRunner = prg.foldMap(tester) 101 //prgRunner(testData) 102 implicit val testWriterRecT = new RecursiveTailRecM[WriterTester]{} 103 val prgRunner = prg.foldMap(testWriter) 104 prgRunner.run(testData)._1.map(println) 105 }
KVStore:
1 import cats.free._ 2 import cats.instances.all._ 3 object catsFreeKVS { 4 object ADTs { 5 sealed trait KVStoreA[+A] 6 case class Put[T](key: String, value: T) extends KVStoreA[Unit] 7 case class Get[T](key: String) extends KVStoreA[Option[T]] 8 case class Del(key: String) extends KVStoreA[Unit] 9 type KVStore[A] = Free[KVStoreA,A] 10 object KVStoreA { 11 def put[T](key: String, value: T): KVStore[Unit] = 12 Free.liftF[KVStoreA,Unit](Put[T](key,value)) 13 def get[T](key: String): KVStore[Option[T]] = 14 Free.liftF[KVStoreA,Option[T]](Get[T](key)) 15 def del(key: String): KVStore[Unit] = 16 Free.liftF[KVStoreA,Unit](Del(key)) 17 def mod[T](key: String, f: T => T): KVStore[Unit] = 18 for { 19 opt <- get[T](key) 20 _ <- opt.map {t => put[T](key,f(t))}.getOrElse(Free.pure(())) 21 } yield() 22 } 23 } 24 object DSLs { 25 import ADTs._ 26 import KVStoreA._ 27 def prg: KVStore[Option[Int]] = 28 for { 29 _ <- put[Int]("wild-cats", 2) 30 _ <- mod[Int]("wild-cats", (_ + 12)) 31 _ <- put[Int]("tame-cats", 5) 32 n <- get[Int]("wild-cats") 33 _ <- del("tame-cats") 34 } yield n 35 } 36 object IMPLs { 37 import ADTs._ 38 import cats.{~>} 39 import cats.data.State 40 41 type KVStoreState[A] = State[Map[String, Any], A] 42 val kvsToState: KVStoreA ~> KVStoreState = new (KVStoreA ~> KVStoreState) { 43 def apply[A](fa: KVStoreA[A]): KVStoreState[A] = 44 fa match { 45 case Put(key, value) => State { (s:Map[String, Any]) => 46 (s.updated(key, value),()) } 47 case Get(key) => State { (s:Map[String, Any]) => 48 (s,s.get(key).asInstanceOf[A]) } 49 case Del(key) => State { (s:Map[String, Any]) => 50 (s - key, (())) } 51 } 52 } 53 } 54 import ADTs._,DSLs._,IMPLs._ 55 val prgRunner = prg.foldMap(kvsToState) 56 prgRunner.run(Map.empty).value 57 58 import cats.{Monad,RecursiveTailRecM} 59 implicitly[Monad[KVStoreState]] 60 implicitly[RecursiveTailRecM[KVStoreState]] 61 }
