深度學習和神經網絡的區別是什么


http://zhidao.baidu.com/link?url=_Y4TSDJGC66-Prh3sCKxmT6S3HbNBlMBpLfniFdBjEcK7eFBqbtNYNxy9e5hUY3u3MiDe8QEglEHcDb47brFuLGXWIXjF-v4BYWxvdiHjvS

 

 

這兩個概念實際上是互相交叉的,例如,卷積神經網絡(Convolutional neural networks,簡稱CNNs)就是一種深度的監督學習下的機器學習模型,而深度置信網(Deep Belief Nets,簡稱DBNs)就是一種無監督學習下的機器學習模型。
深度學習的概念源於人工神經網絡的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發現數據的分布式特征表示。
深度學習的概念由Hinton等人於2006年提出。基於深信度網(DBN)提出非監督貪心逐層訓練算法,為解決深層結構相關的優化難題帶來希望,隨后提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網絡是第一個真正多層結構學習算法,它利用空間相對關系減少參數數目以提高訓練性能。
 

meng2235 

采納率:78% 擅長: 電影 電視 動漫

其他回答

  從廣義上說深度學習的網絡結構也是多層神經網絡的一種。
  傳統意義上的多層神經網絡是只有輸入層、隱藏層、輸出層。其中隱藏層的層數根據需要而定,沒有明確的理論推導來說明到底多少層合適。
  而深度學習中最著名的卷積神經網絡CNN,在原來多層神經網絡的基礎上,加入了特征學習部分,這部分是模仿人腦對信號處理上的分級的。具體操作就是在原來的全連接的層前面加入了部分連接的卷積層與降維層,而且加入的是一個層級。
  輸入層 - 卷積層 -降維層 -卷積層 - 降維層 -- .... -- 隱藏層 -輸出層
  簡單來說,原來多層神經網絡做的步驟是:特征映射到值。特征是人工挑選。
  深度學習做的步驟是 信號->特征->值。 特征是由網絡自己選擇。
  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM