Elasticsearch之client源碼簡要分析


問題

讓我們帶着問題去學習,效率會更高

1  es集群只配置一個節點,client是否能夠自動發現集群中的所有節點?是如何發現的?

2  es client如何做到負載均衡?

3  一個es node掛掉之后,es client如何摘掉該節點?

4  es client node檢測分為兩種模式(SimpleNodeSampler和SniffNodesSampler),有什么不同?

核心類

  • TransportClient    es client對外API類 
  • TransportClientNodesService  維護node節點的類
  • ScheduledNodeSampler   定期維護正常節點類
  • NettyTransport   進行數據傳輸
  • NodeSampler     節點嗅探器

Client初始化過程

初始化代碼

1  Settings.Builder builder = Settings.settingsBuilder()
                                   .put("cluster.name", clusterName)
                                   .put("client.transport.sniff", true);
Settings settings = builder.build(); 
2  TransportClient client = TransportClient.builder().settings(settings).build(); 
3  for (TransportAddress transportAddress : transportAddresses) {
    client.addTransportAddress(transportAddress);
}

1  ES 通過builder模式構造了基礎的配置參數;

2  通過build構造了client,這個時候包括構造client、初始化ThreadPool、構造TransportClientNodesService、啟動定時任務、定制化嗅探類型;

3  添加集群可用地址,比如我只配了集群中的一個節點;

構建client

調用build API

其中,關於依賴注入的簡單說明:Guice 是 Google 用於 Java™ 開發的開放源碼依賴項注入框架(感興趣的可以了解下,這里不做重點講解),具體可參考下邊鏈接:

  1. https://github.com/google/guice/wiki/GettingStarted
  2. http://www.cnblogs.com/whitewolf/p/4185908.html
  3. http://www.ibm.com/developerworks/cn/java/j-guice.html

初始化TransportClientNodesService

在上一幅圖的 modules.createInjector對TransportClientNodesService進行實例化,在TransportClient進行注入,可以看到TransportClient里邊的絕大部分API都是通過TransportClientNodesService進行代理的

Guice通過注解進行注入

 在上圖中:注入了集群名稱、線程池等,重點是如下代碼:該段代碼選擇了節點嗅探器的類型  嗅探同一集群中的所有節點(SniffNodesSampler)或者是只關注配置文件配置的節點(SimpleNodeSampler)

if (this.settings.getAsBoolean("client.transport.sniff", false)) {
    this.nodesSampler = new SniffNodesSampler();
} else {
    this.nodesSampler = new SimpleNodeSampler();
}

特點:

SniffNodesSampler:client會主動發現集群里的其他節點,會創建fully connect(什么叫fully connect?后邊說)
SimpleNodeSampler:ping listedNodes中的所有node,區別在於這里創建的都是light connect;

其中TransportClientNodesService維護了三個節點存儲數據結構:

// nodes that are added to be discovered
1 private volatile List<DiscoveryNode> listedNodes = Collections.emptyList();
2 private volatile List<DiscoveryNode> nodes = Collections.emptyList();
3 private volatile List<DiscoveryNode> filteredNodes = Collections.emptyList();

1    代表配置文件中主動加入的節點;

2    代表參與請求的節點;

3    過濾掉的不能進行請求處理的節點;

Client如何做到負載均衡

如上圖,我們發現每次 execute 的時候,是從 nodes 這個數據結構中獲取節點,然后通過簡單的 rouund-robbin 獲取節點服務器;核心代碼如下:

private final AtomicInteger randomNodeGenerator = new AtomicInteger();
......
private int getNodeNumber() {
    int index = randomNodeGenerator.incrementAndGet();
    if (index < 0) {
        index = 0;
        randomNodeGenerator.set(0);
    }
    return index;
}

然后通過netty的channel將數據寫入,核心代碼如下:

public void sendRequest(final DiscoveryNode node, final long requestId, final String action, final TransportRequest request, TransportRequestOptions options) throws IOException, TransportException {
 
1    Channel targetChannel = nodeChannel(node, options); 
 
    if (compress) {
        options = TransportRequestOptions.builder(options).withCompress(true).build();
    }
 
    byte status = 0;
    status = TransportStatus.setRequest(status);
 
    ReleasableBytesStreamOutput bStream = new ReleasableBytesStreamOutput(bigArrays);
    boolean addedReleaseListener = false;
    try {
        bStream.skip(NettyHeader.HEADER_SIZE);
        StreamOutput stream = bStream;
        // only compress if asked, and, the request is not bytes, since then only
        // the header part is compressed, and the "body" can't be extracted as compressed
        if (options.compress() && (!(request instanceof BytesTransportRequest))) {
            status = TransportStatus.setCompress(status);
            stream = CompressorFactory.defaultCompressor().streamOutput(stream);
        }
 
        // we pick the smallest of the 2, to support both backward and forward compatibility
        // note, this is the only place we need to do this, since from here on, we use the serialized version
        // as the version to use also when the node receiving this request will send the response with
        Version version = Version.smallest(this.version, node.version());
 
        stream.setVersion(version);
        stream.writeString(action);
 
        ReleasablePagedBytesReference bytes;
        ChannelBuffer buffer;
        // it might be nice to somehow generalize this optimization, maybe a smart "paged" bytes output
        // that create paged channel buffers, but its tricky to know when to do it (where this option is
        // more explicit).
        if (request instanceof BytesTransportRequest) {
            BytesTransportRequest bRequest = (BytesTransportRequest) request;
            assert node.version().equals(bRequest.version());
            bRequest.writeThin(stream);
            stream.close();
            bytes = bStream.bytes();
            ChannelBuffer headerBuffer = bytes.toChannelBuffer();
            ChannelBuffer contentBuffer = bRequest.bytes().toChannelBuffer();
            buffer = ChannelBuffers.wrappedBuffer(NettyUtils.DEFAULT_GATHERING, headerBuffer, contentBuffer);
        } else {
            request.writeTo(stream);
            stream.close();
            bytes = bStream.bytes();
            buffer = bytes.toChannelBuffer();
        }
        NettyHeader.writeHeader(buffer, requestId, status, version);
2        ChannelFuture future = targetChannel.write(buffer);
        ReleaseChannelFutureListener listener = new ReleaseChannelFutureListener(bytes);
        future.addListener(listener);
        addedReleaseListener = true;
        transportServiceAdapter.onRequestSent(node, requestId, action, request, options);
    } finally {
        if (!addedReleaseListener) {
            Releasables.close(bStream.bytes());
        }
    }
}
View Code

其中最重要的就是1和2,中間一段是處理數據和進行一些必要的步驟

1代表拿到一個連接;

2代表通過拿到的連接寫數據;

這時候就會有新的問題

1   nodes的數據是何時寫入的?

2   連接是什么時候創建的?

Nodes數據何時寫入

核心是調用doSampler,代碼如下:

protected void doSample() {
    // the nodes we are going to ping include the core listed nodes that were added
    // and the last round of discovered nodes
    Set<DiscoveryNode> nodesToPing = Sets.newHashSet();
    for (DiscoveryNode node : listedNodes) {
        nodesToPing.add(node);
    }
    for (DiscoveryNode node : nodes) {
        nodesToPing.add(node);
    }
 
    final CountDownLatch latch = new CountDownLatch(nodesToPing.size());
    final ConcurrentMap<DiscoveryNode, ClusterStateResponse> clusterStateResponses = ConcurrentCollections.newConcurrentMap();
    for (final DiscoveryNode listedNode : nodesToPing) {
        threadPool.executor(ThreadPool.Names.MANAGEMENT).execute(new Runnable() {
            @Override
            public void run() {
                try {
                    if (!transportService.nodeConnected(listedNode)) {
                        try {
 
                            // if its one of the actual nodes we will talk to, not to listed nodes, fully connect
                            if (nodes.contains(listedNode)) {
                                logger.trace("connecting to cluster node [{}]", listedNode);
                                transportService.connectToNode(listedNode);
                            } else {
                                // its a listed node, light connect to it...
                                logger.trace("connecting to listed node (light) [{}]", listedNode);
                                transportService.connectToNodeLight(listedNode);
                            }
                        } catch (Exception e) {
                            logger.debug("failed to connect to node [{}], ignoring...", e, listedNode);
                            latch.countDown();
                            return;
                        }
                    }
                    //核心是在這里,剛剛開始初始化的時候,可能只有配置的一個節點,這個時候會通過這個地址發送一個state狀態監測
                    //"cluster:monitor/state"
                    transportService.sendRequest(listedNode, ClusterStateAction.NAME,
                            headers.applyTo(Requests.clusterStateRequest().clear().nodes(true).local(true)),
                            TransportRequestOptions.builder().withType(TransportRequestOptions.Type.STATE).withTimeout(pingTimeout).build(),
                            new BaseTransportResponseHandler<ClusterStateResponse>() {
 
                                @Override
                                public ClusterStateResponse newInstance() {
                                    return new ClusterStateResponse();
                                }
 
                                @Override
                                public String executor() {
                                    return ThreadPool.Names.SAME;
                                }
 
                                @Override
                                public void handleResponse(ClusterStateResponse response) {
/*通過回調,會在這個地方返回集群中類似下邊所有節點的信息
{
  "version" : 27,
  "state_uuid" : "YSI9d_HiQJ-FFAtGFCVOlw",
  "master_node" : "TXHHx-XRQaiXAxtP1EzXMw",
  "blocks" : { },
  "nodes" : {
    "7" : {
      "name" : "es03",
      "transport_address" : "1.1.1.1:9300",
      "attributes" : {
        "data" : "false",
        "master" : "true"
      }
    },
    "6" : {
      "name" : "common02",
      "transport_address" : "1.1.1.2:9300",
      "attributes" : {
        "master" : "false"
      }
    },
    "5" : {
      "name" : "es02",
      "transport_address" : "1.1.1.3:9300",
      "attributes" : {
        "data" : "false",
        "master" : "true"
      }
    },
    "4" : {
      "name" : "common01",
      "transport_address" : "1.1.1.4:9300",
      "attributes" : {
        "master" : "false"
      }
    },
    "3" : {
      "name" : "common03",
      "transport_address" : "1.1.1.5:9300",
      "attributes" : {
        "master" : "false"
      }
    },
    "2" : {
      "name" : "es01",
      "transport_address" : "1.1.1.6:9300",
      "attributes" : {
        "data" : "false",
        "master" : "true"
      }
    },
    "1" : {
      "name" : "common04",
      "transport_address" : "1.1.1.7:9300",
      "attributes" : {
        "master" : "false"
      }
    }
  },
  "metadata" : {
    "cluster_uuid" : "_na1x_",
    "templates" : { },
    "indices" : { }
  },
  "routing_table" : {
    "indices" : { }
  },
  "routing_nodes" : {
    "unassigned" : [ ],
  }
}
*/
                                    clusterStateResponses.put(listedNode, response);
                                    latch.countDown();
                                }
 
                                @Override
                                public void handleException(TransportException e) {
                                    logger.info("failed to get local cluster state for {}, disconnecting...", e, listedNode);
                                    transportService.disconnectFromNode(listedNode);
                                    latch.countDown();
                                }
                            });
                } catch (Throwable e) {
                    logger.info("failed to get local cluster state info for {}, disconnecting...", e, listedNode);
                    transportService.disconnectFromNode(listedNode);
                    latch.countDown();
                }
            }
        });
    }
 
    try {
        latch.await();
    } catch (InterruptedException e) {
        return;
    }
 
    HashSet<DiscoveryNode> newNodes = new HashSet<>();
    HashSet<DiscoveryNode> newFilteredNodes = new HashSet<>();
    for (Map.Entry<DiscoveryNode, ClusterStateResponse> entry : clusterStateResponses.entrySet()) {
        if (!ignoreClusterName && !clusterName.equals(entry.getValue().getClusterName())) {
            logger.warn("node {} not part of the cluster {}, ignoring...", entry.getValue().getState().nodes().localNode(), clusterName);
            newFilteredNodes.add(entry.getKey());
            continue;
        }
//接下來在這個地方拿到所有的data nodes 寫入到nodes節點里邊
        for (ObjectCursor<DiscoveryNode> cursor : entry.getValue().getState().nodes().dataNodes().values()) {
            newNodes.add(cursor.value);
        }
    }
 
    nodes = validateNewNodes(newNodes);
    filteredNodes = Collections.unmodifiableList(new ArrayList<>(newFilteredNodes));
}
View Code

其中調用時機分為兩部分:

1  client.addTransportAddress(transportAddress);

2 ScheduledNodeSampler,默認每隔5s會進行一次對各個節點的請求操作;

連接是何時創建的呢

也是在doSampler調用,最終由NettryTransport創建

這個時候發現,如果是light則創建輕連接,也就是,否則創建fully connect,其中包括

  • recovery:做數據恢復recovery,默認個數2個;
  • bulk:用於bulk請求,默認個數3個;
  • med/reg:典型的搜索和單doc索引,默認個數6個;
  • high:如集群state的發送等,默認個數1個;
  • ping:就是node之間的ping咯。默認個數1個;

對應的代碼為:

public void start() {
    List<Channel> newAllChannels = new ArrayList<>();
    newAllChannels.addAll(Arrays.asList(recovery));
    newAllChannels.addAll(Arrays.asList(bulk));
    newAllChannels.addAll(Arrays.asList(reg));
    newAllChannels.addAll(Arrays.asList(state));
    newAllChannels.addAll(Arrays.asList(ping));
    this.allChannels = Collections.unmodifiableList(newAllChannels);
}

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM