在這篇文章中我們將討論如何利用 Apache Spark 來提升 MySQL 的查詢性能。
介紹
在我的前一篇文章 Apache Spark with MySQL 中介紹了如何利用 Apache Spark 實現數據分析以及如何對大量存放於文本文件的數據進行轉換和分析。瓦迪姆還做了一個基准測試用來比較 MySQL 和 Spark with Parquet 柱狀格式 (使用空中交通性能數據) 二者的性能。 這個測試非常棒,但如果我們不希望將數據從 MySQL 移到其他的存儲系統中,而是繼續在已有的 MySQL 服務器上執行查詢的話,Apache Spark 一樣可以幫到我們!
開始
在已有的 MySQL 服務器之上使用 Apache Spark (無需將數據導出到 Spark 或者 Hadoop 平台上),這樣至少可以提升 10 倍的查詢性能。使用多個 MySQL 服務器(復制或者 Percona XtraDB Cluster)可以讓我們在某些查詢上得到額外的性能提升。你也可以使用 Spark 的緩存功能來緩存整個 MySQL 查詢結果表。
思路很簡單:Spark 可以通過 JDBC 讀取 MySQL 上的數據,也可以執行 SQL 查詢,因此我們可以直接連接到 MySQL 並執行查詢。那么為什么速度會快呢?對一些需要運行很長時間的查詢(如報表或者BI),由於 Spark 是一個大規模並行系統,因此查詢會非常的快。MySQL 只能為每一個查詢分配一個 CPU 核來處理,而 Spark 可以使用所有集群節點的所有核。在下面的例子中,我們會在 Spark 中執行 MySQL 查詢,這個查詢速度比直接在 MySQL 上執行速度要快 5 到 10 倍。
另外,Spark 可以增加“集群”級別的並行機制,在使用 MySQL 復制或者 Percona XtraDB Cluster 的情況下,Spark 可以把查詢變成一組更小的查詢(有點像使用了分區表時可以在每個分區都執行一個查詢),然后在多個 Percona XtraDB Cluster 節點的多個從服務器上並行的執行這些小查詢。最后它會使用 map/reduce 方式將每個節點返回的結果聚合在一起行程完整的結果。
這篇文章跟我之前文章 “Airlines On-Time Performance” 所使用的數據庫是相同的。瓦迪姆創建了一些腳本可以方便的下載這些數據並上傳到 MySQL 數據庫。腳本的下載地址請看 這里。同時我們這次使用的是 2016年7月26日發布的 Apache Spark 2.0。
安裝 Apache Spark
使用獨立模式啟動 Apache Spark 是很簡單的,如下幾步即可:
- 下載 Apache Spark 2.0 並解壓到某目錄
- 啟動 master.
- 啟動 slave (worker) 並連接到 master
- 啟動應用 (spark-shell 或者 spark-sql).
示例:
root@thor:~/spark# ./sbin/start-master.sh less ../logs/spark-root-org.apache.spark.deploy.master.Master-1-thor.out 15/08/25 11:21:21 INFO Master: Starting Spark master at spark://thor:7077 15/08/25 11:21:21 INFO Utils: Successfully started service 'MasterUI' on port 8080. 15/08/25 11:21:21 INFO MasterWebUI: Started MasterWebUI at http://10.60.23.188:8080 root@thor:~/spark# ./sbin/start-slave.sh spark://thor:7077
為了連接到 Spark ,我們可以使用 spark-shell (Scala)、pyspark (Python) 或者 spark-sql。spark-sql 和 MySQL 命令行類似,因此這是最簡單的選擇(你甚至可以用 show tables 命令)。我同時還需要在交互模式下使用 Scala ,因此我選擇的是 spark-shell 。在下面所有的例子中,我都是在 MySQL 和 Spark 上使用相同的 SQL 查詢,所以其實沒多大的不同。
為了讓 Spark 能用上 MySQL 服務器,我們需要驅動程序 Connector/J for MySQL. 下載這個壓縮文件解壓后拷貝 mysql-connector-java-5.1.39-bin.jar 到 spark 目錄,然后在 conf/spark-defaults.conf 中添加類路徑,如下:
spark.driver.extraClassPath = /usr/local/spark/mysql-connector-java-5.1.39-bin.jar spark.executor.extraClassPath = /usr/local/spark/mysql-connector-java-5.1.39-bin.jar
利用 Apache Spark 運行 MySQL 查詢
在這個測試中我們使用的一台擁有 12 核(老的 Intel(R) Xeon(R) CPU L5639 @ 2.13GHz 處理器) 以及 48G 內存,帶有 SSD 磁盤的物理服務器。 在這台機器上我安裝了 MySQL 並啟動了 Spark 主節點和從節點。
現在我們可以在 Spark 中運行 MySQL 查詢了。首先,從 Spark 目錄中啟動 Shell (在我這里是 /usr/local/spark ):
$ ./bin/spark-shell --driver-memory 4G --master spark://server1:7077
然后我們將連接到 MySQL 服務器並注冊臨時視圖:
val jdbcDF = spark.read.format("jdbc").options( Map("url" -> "jdbc:mysql://localhost:3306/ontime?user=root&password=", "dbtable" -> "ontime.ontime_part", "fetchSize" -> "10000", "partitionColumn" -> "yeard", "lowerBound" -> "1988", "upperBound" -> "2016", "numPartitions" -> "28" )).load() jdbcDF.createOrReplaceTempView("ontime")
這樣我們就為 Spark 創建了一個“數據源”(換句話說就是相當於 Spark 建立了到 MySQL 的連接)。Spark 表名 “ontime” 對應連接到 MySQL 的ontime.ontime_part 表,現在可以在 Spark 中運行 SQL 了,它們是按順序被一一解析並轉換成 MySQL 查詢的。
“partitionColumn” 在這里非常重要,它告訴 Spark 並行的執行多個查詢,每個分區分配一個查詢執行。
現在我們可以運行查詢:
val sqlDF = sql("select min(year), max(year) as max_year, Carrier, count(*) as cnt, sum(if(ArrDelayMinutes>30, 1, 0)) as flights_delayed, round(sum(if(ArrDelayMinutes>30, 1, 0))/count(*),2) as rate FROM ontime WHERE DayOfWeek not in (6,7) and OriginState not in ('AK', 'HI', 'PR', 'VI') and DestState not in ('AK', 'HI', 'PR', 'VI') and (origin = 'RDU' or dest = 'RDU') GROUP by carrier HAVING cnt > 100000 and max_year > '1990' ORDER by rate DESC, cnt desc LIMIT 10") sqlDF.show()
MySQL 查詢示例
讓我們暫時回到 MySQL 來看看這個查詢例子,我選出了如下的查詢語句 (來自我以前的文章):
select min(year), max(year) as max_year, Carrier, count(*) as cnt, sum(if(ArrDelayMinutes>30, 1, 0)) as flights_delayed, round(sum(if(ArrDelayMinutes>30, 1, 0))/count(*),2) as rate FROM ontime WHERE DayOfWeek not in (6,7) and OriginState not in ('AK', 'HI', 'PR', 'VI') and DestState not in ('AK', 'HI', 'PR', 'VI') GROUP by carrier HAVING cnt > 100000 and max_year > '1990' ORDER by rate DESC, cnt desc LIMIT 10
這個查詢用來查找出每個航空公司航班延誤的架數。此外該查詢還將很智能的計算准點率,考慮到航班數量(我們不希望小航空公司跟大航空公司比較,同時一些老的關閉的航空公司也不在計算范圍之內)。
我選擇這個查詢主要的原因是,這在 MySQL 很難再優化了,所有的這些 WHERE 條件智能過濾掉約 70% 的記錄行。我做了一個基本的計算:
mysql> select count(*) FROM ontime WHERE DayOfWeek not in (6,7) and OriginState not in ('AK', 'HI', 'PR', 'VI') and DestState not in ('AK', 'HI', 'PR', 'VI'); +-----------+ | count(*) | +-----------+ | 108776741 | +-----------+ mysql> select count(*) FROM ontime; +-----------+ | count(*) | +-----------+ | 152657276 | +-----------+ mysql> select round((108776741/152657276)*100, 2); +-------------------------------------+ | round((108776741/152657276)*100, 2) | +-------------------------------------+ | 71.26 | +-------------------------------------+
表結構如下:
CREATE TABLE `ontime_part` ( `YearD` int(11) NOT NULL, `Quarter` tinyint(4) DEFAULT NULL, `MonthD` tinyint(4) DEFAULT NULL, `DayofMonth` tinyint(4) DEFAULT NULL, `DayOfWeek` tinyint(4) DEFAULT NULL, `FlightDate` date DEFAULT NULL, `UniqueCarrier` char(7) DEFAULT NULL, `AirlineID` int(11) DEFAULT NULL, `Carrier` char(2) DEFAULT NULL, `TailNum` varchar(50) DEFAULT NULL, ... `id` int(11) NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`,`YearD`), KEY `covered` (`DayOfWeek`,`OriginState`,`DestState`,`Carrier`,`YearD`,`ArrDelayMinutes`) ) ENGINE=InnoDB AUTO_INCREMENT=162668935 DEFAULT CHARSET=latin1 /*!50100 PARTITION BY RANGE (YearD) (PARTITION p1987 VALUES LESS THAN (1988) ENGINE = InnoDB, PARTITION p1988 VALUES LESS THAN (1989) ENGINE = InnoDB, PARTITION p1989 VALUES LESS THAN (1990) ENGINE = InnoDB, PARTITION p1990 VALUES LESS THAN (1991) ENGINE = InnoDB, PARTITION p1991 VALUES LESS THAN (1992) ENGINE = InnoDB, PARTITION p1992 VALUES LESS THAN (1993) ENGINE = InnoDB, PARTITION p1993 VALUES LESS THAN (1994) ENGINE = InnoDB, PARTITION p1994 VALUES LESS THAN (1995) ENGINE = InnoDB, PARTITION p1995 VALUES LESS THAN (1996) ENGINE = InnoDB, PARTITION p1996 VALUES LESS THAN (1997) ENGINE = InnoDB, PARTITION p1997 VALUES LESS THAN (1998) ENGINE = InnoDB, PARTITION p1998 VALUES LESS THAN (1999) ENGINE = InnoDB, PARTITION p1999 VALUES LESS THAN (2000) ENGINE = InnoDB, PARTITION p2000 VALUES LESS THAN (2001) ENGINE = InnoDB, PARTITION p2001 VALUES LESS THAN (2002) ENGINE = InnoDB, PARTITION p2002 VALUES LESS THAN (2003) ENGINE = InnoDB, PARTITION p2003 VALUES LESS THAN (2004) ENGINE = InnoDB, PARTITION p2004 VALUES LESS THAN (2005) ENGINE = InnoDB, PARTITION p2005 VALUES LESS THAN (2006) ENGINE = InnoDB, PARTITION p2006 VALUES LESS THAN (2007) ENGINE = InnoDB, PARTITION p2007 VALUES LESS THAN (2008) ENGINE = InnoDB, PARTITION p2008 VALUES LESS THAN (2009) ENGINE = InnoDB, PARTITION p2009 VALUES LESS THAN (2010) ENGINE = InnoDB, PARTITION p2010 VALUES LESS THAN (2011) ENGINE = InnoDB, PARTITION p2011 VALUES LESS THAN (2012) ENGINE = InnoDB, PARTITION p2012 VALUES LESS THAN (2013) ENGINE = InnoDB, PARTITION p2013 VALUES LESS THAN (2014) ENGINE = InnoDB, PARTITION p2014 VALUES LESS THAN (2015) ENGINE = InnoDB, PARTITION p2015 VALUES LESS THAN (2016) ENGINE = InnoDB, PARTITION p_new VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */
就算有一個“覆蓋”索引,MySQL 也將掃描約 ~70M-100M 行的數據並創建一個臨時表:
mysql> explain select min(yearD), max(yearD) as max_year, Carrier, count(*) as cnt, sum(if(ArrDelayMinutes>30, 1, 0)) as flights_delayed, round(sum(if(ArrDelayMinutes>30, 1, 0))/count(*),2) as rate FROM ontime_part WHERE DayOfWeek not in (6,7) and OriginState not in ('AK', 'HI', 'PR', 'VI') and DestState not in ('AK', 'HI', 'PR', 'VI') GROUP by carrier HAVING cnt > 1000 and max_year > '1990' ORDER by rate DESC, cnt desc LIMIT 10G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: ontime_part type: range possible_keys: covered key: covered key_len: 2 ref: NULL rows: 70483364 Extra: Using where; Using index; Using temporary; Using filesort 1 row in set (0.00 sec)
下面是 MySQL 查詢的響應時間:
mysql> select min(yearD), max(yearD) as max_year, Carrier, count(*) as cnt, sum(if(ArrDelayMinutes>30, 1, 0)) as flights_delayed, round(sum(if(ArrDelayMinutes>30, 1, 0))/count(*),2) as rate FROM ontime_part WHERE DayOfWeek not in (6,7) and OriginState not in ('AK', 'HI', 'PR', 'VI') and DestState not in ('AK', 'HI', 'PR', 'VI') GROUP by carrier HAVING cnt > 1000 and max_year > '1990' ORDER by rate DESC, cnt desc LIMIT 10; +------------+----------+---------+----------+-----------------+------+ | min(yearD) | max_year | Carrier | cnt | flights_delayed | rate | +------------+----------+---------+----------+-----------------+------+ | 2003 | 2013 | EV | 2962008 | 464264 | 0.16 | | 2003 | 2013 | B6 | 1237400 | 187863 | 0.15 | | 2006 | 2011 | XE | 1615266 | 230977 | 0.14 | | 2003 | 2005 | DH | 501056 | 69833 | 0.14 | | 2001 | 2013 | MQ | 4518106 | 605698 | 0.13 | | 2003 | 2013 | FL | 1692887 | 212069 | 0.13 | | 2004 | 2010 | OH | 1307404 | 175258 | 0.13 | | 2006 | 2013 | YV | 1121025 | 143597 | 0.13 | | 2003 | 2006 | RU | 1007248 | 126733 | 0.13 | | 1988 | 2013 | UA | 10717383 | 1327196 | 0.12 | +------------+----------+---------+----------+-----------------+------+ 10 rows in set (19 min 16.58 sec)
足足執行了 19 分鍾,這個結果真的讓人爽不起來。
SQL in Spark
現在我們希望在 Spark 中運行相同的查詢,讓 Spark 從 MySQL 讀取數據。我們創建了一個“數據源”然后執行如下查詢:
scala> val jdbcDF = spark.read.format("jdbc").options( | Map("url" -> "jdbc:mysql://localhost:3306/ontime?user=root&password=mysql", | "dbtable" -> "ontime.ontime_sm", | "fetchSize" -> "10000", | "partitionColumn" -> "yeard", "lowerBound" -> "1988", "upperBound" -> "2015", "numPartitions" -> "48" | )).load() 16/08/02 23:24:12 WARN JDBCRelation: The number of partitions is reduced because the specified number of partitions is less than the difference between upper bound and lower bound. Updated number of partitions: 27; Input number of partitions: 48; Lower bound: 1988; Upper bound: 2015. dbcDF: org.apache.spark.sql.DataFrame = [id: int, YearD: date ... 19 more fields] scala> jdbcDF.createOrReplaceTempView("ontime") scala> val sqlDF = sql("select min(yearD), max(yearD) as max_year, Carrier, count(*) as cnt, sum(if(ArrDelayMinutes>30, 1, 0)) as flights_delayed, round(sum(if(ArrDelayMinutes>30, 1, 0))/count(*),2) as rate FROM ontime WHERE OriginState not in ('AK', 'HI', 'PR', 'VI') and DestState not in ('AK', 'HI', 'PR', 'VI') GROUP by carrier HAVING cnt > 1000 and max_year > '1990' ORDER by rate DESC, cnt desc LIMIT 10") sqlDF: org.apache.spark.sql.DataFrame = [min(yearD): date, max_year: date ... 4 more fields] scala> sqlDF.show() +----------+--------+-------+--------+---------------+----+ |min(yearD)|max_year|Carrier| cnt|flights_delayed|rate| +----------+--------+-------+--------+---------------+----+ | 2003| 2013| EV| 2962008| 464264|0.16| | 2003| 2013| B6| 1237400| 187863|0.15| | 2006| 2011| XE| 1615266| 230977|0.14| | 2003| 2005| DH| 501056| 69833|0.14| | 2001| 2013| MQ| 4518106| 605698|0.13| | 2003| 2013| FL| 1692887| 212069|0.13| | 2004| 2010| OH| 1307404| 175258|0.13| | 2006| 2013| YV| 1121025| 143597|0.13| | 2003| 2006| RU| 1007248| 126733|0.13| | 1988| 2013| UA|10717383| 1327196|0.12| +----------+--------+-------+--------+---------------+----+
Spark-shell 並不會顯示查詢的執行時間,這個可以從 spark-sql 提供的 Web UI 中獲取到。我在 spark-sql 中重新執行相同的查詢:
./bin/spark-sql --driver-memory 4G --master spark://thor:7077 spark-sql> CREATE TEMPORARY VIEW ontime > USING org.apache.spark.sql.jdbc > OPTIONS ( > url "jdbc:mysql://localhost:3306/ontime?user=root&password=", > dbtable "ontime.ontime_part", > fetchSize "1000", > partitionColumn "yearD", lowerBound "1988", upperBound "2014", numPartitions "48" > ); 16/08/04 01:44:27 WARN JDBCRelation: The number of partitions is reduced because the specified number of partitions is less than the difference between upper bound and lower bound. Updated number of partitions: 26; Input number of partitions: 48; Lower bound: 1988; Upper bound: 2014. Time taken: 3.864 seconds spark-sql> select min(yearD), max(yearD) as max_year, Carrier, count(*) as cnt, sum(if(ArrDelayMinutes>30, 1, 0)) as flights_delayed, round(sum(if(ArrDelayMinutes>30, 1, 0))/count(*),2) as rate FROM ontime WHERE DayOfWeek not in (6,7) and OriginState not in ('AK', 'HI', 'PR', 'VI') and DestState not in ('AK', 'HI', 'PR', 'VI') GROUP by carrier HAVING cnt > 1000 and max_year > '1990' ORDER by rate DESC, cnt desc LIMIT 10; 16/08/04 01:45:13 WARN Utils: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.debug.maxToStringFields' in SparkEnv.conf. 2003 2013 EV 2962008 464264 0.16 2003 2013 B6 1237400 187863 0.15 2006 2011 XE 1615266 230977 0.14 2003 2005 DH 501056 69833 0.14 2001 2013 MQ 4518106 605698 0.13 2003 2013 FL 1692887 212069 0.13 2004 2010 OH 1307404 175258 0.13 2006 2013 YV 1121025 143597 0.13 2003 2006 RU 1007248 126733 0.13 1988 2013 UA 10717383 1327196 0.12 Time taken: 139.628 seconds, Fetched 10 row(s)
可以看到查詢的時間足足快了 10 倍之多(同一台機器,只有一台機器)。但是到底這些查詢是怎么變成 MySQL 查詢的呢?然后為什么這樣的查詢會快那么多。讓我們深入到 MySQL 一探究竟:
深入 MySQL
Spark:
scala> sqlDF.show() [Stage 4:> (0 + 26) / 26]
MySQL:
mysql> select id, info from information_schema.processlist where info is not NULL and info not like '%information_schema%'; +-------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | id | info | +-------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | 10948 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 2001 AND yearD < 2002) | | 10965 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 2007 AND yearD < 2008) | | 10966 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 1991 AND yearD < 1992) | | 10967 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 1994 AND yearD < 1995) | | 10968 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 1998 AND yearD < 1999) | | 10969 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 2010 AND yearD < 2011) | | 10970 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 2002 AND yearD < 2003) | | 10971 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 2006 AND yearD < 2007) | | 10972 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 1990 AND yearD < 1991) | | 10953 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 2009 AND yearD < 2010) | | 10947 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 1993 AND yearD < 1994) | | 10956 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD < 1989 or yearD is null) | | 10951 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 2005 AND yearD < 2006) | | 10954 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 'HI', 'PR', 'VI')))) AND ((NOT (DestState IN ('AK', 'HI', 'PR', 'VI'))))) AND (yearD >= 1996 AND yearD < 1997) | | 10955 | SELECT `YearD`,`ArrDelayMinutes`,`Carrier` FROM ontime.ontime_part WHERE (((NOT (DayOfWeek IN (6, 7)))) AND ((NOT (OriginState IN ('AK', 