繼上篇介紹JVM的crash時的hs_err_pid文件,因為對JVM並不了解,看起來特別吃力,經大神點播,得先明白JVM的原理,才能看懂那些報錯文檔。搜集資料如下。
http://blog.csdn.net/ning109314/article/details/10411495/ 介紹的很好,看起來簡單易懂。
對自己影響大的內容摘錄如下:
一、JVM
JVM工作原理和特點主要是指操作系統裝入JVM是通過jdk中Java.exe來完成,通過下面4步來完成JVM環境.
1.創建JVM裝載環境和配置
2.裝載JVM.dll
3.初始化JVM.dll並掛界到JNIENV(JNI調用接口)實例
4.調用JNIEnv實例裝載並處理class類。
在我們運行和調試Java程序的時候,經常會提到一個JVM的概念.JVM是Java程序運行的環境,但是他同時一個操作系統的一個應用程序一個進程,因此他也有他自己的運行的生命周期,也有自己的代碼和數據空間.
二、GC基礎
JAVA堆的描述如下:
內存由 Perm 和 Heap 組成. 其中
Heap = {Old + NEW = { Eden , from, to } }
JVM內存模型中分兩大塊,一塊是 NEW Generation, 另一塊是Old Generation. 在New Generation中,有一個叫Eden的空間,主要是用來存放新生的對象,還有兩個Survivor Spaces(from,to), 它們用來存放每次垃圾回收后存活下來的對象。在Old Generation中,主要存放應用程序中生命周期長的內存對象,還有個Permanent Generation,主要用來放JVM自己的反射對象,比如類對象和方法對象等。
垃圾回收描述:
在New Generation塊中,垃圾回收一般用Copying的算法,速度快。每次GC的時候,存活下來的對象首先由Eden拷貝到某個Survivor Space, 當Survivor Space空間滿了后, 剩下的live對象就被直接拷貝到Old Generation中去。因此,每次GC后,Eden內存塊會被清空。在Old Generation塊中,垃圾回收一般用mark-compact的算法,速度慢些,但減少內存要求.
垃圾回收分多級,0級為全部(Full)的垃圾回收,會回收OLD段中的垃圾;1級或以上為部分垃圾回收,只會回收NEW中的垃圾,內存溢出通常發生於OLD段或Perm段垃圾回收后,仍然無內存空間容納新的Java對象的情況。
當一個URL被訪問時,內存申請過程如下:
A. JVM會試圖為相關Java對象在Eden中初始化一塊內存區域
B. 當Eden空間足夠時,內存申請結束。否則到下一步
C. JVM試圖釋放在Eden中所有不活躍的對象(這屬於1或更高級的垃圾回收), 釋放后若Eden空間仍然不足以放入新對象,則試圖將部分Eden中活躍對象放入Survivor區
D. Survivor區被用來作為Eden及OLD的中間交換區域,當OLD區空間足夠時,Survivor區的對象會被移到Old區,否則會被保留在Survivor區
E. 當OLD區空間不夠時,JVM會在OLD區進行完全的垃圾收集(0級)
F. 完全垃圾收集后,若Survivor及OLD區仍然無法存放從Eden復制過來的部分對象,導致JVM無法在Eden區為新對象創建內存區域,則出現”out of memory錯誤”
JVM調優建議:
ms/mx:定義YOUNG+OLD段的總尺寸,ms為JVM啟動時YOUNG+OLD的內存大小;mx為最大可占用的YOUNG+OLD內存大小。在用戶生產環境上一般將這兩個值設為相同,以減少運行期間系統在內存申請上所花的開銷。
NewSize/MaxNewSize:定義YOUNG段的尺寸,NewSize為JVM啟動時YOUNG的內存大小;MaxNewSize為最大可占用的YOUNG內存大小。在用戶生產環境上一般將這兩個值設為相同,以減少運行期間系統在內存申請上所花的開銷。
PermSize/MaxPermSize:定義Perm段的尺寸,PermSize為JVM啟動時Perm的內存大小;MaxPermSize為最大可占用的Perm內存大小。在用戶生產環境上一般將這兩個值設為相同,以減少運行期間系統在內存申請上所花的開銷。
SurvivorRatio:設置Survivor空間和Eden空間的比例
內存溢出的可能性
1. OLD段溢出
這種內存溢出是最常見的情況之一,產生的原因可能是:
1) 設置的內存參數過小(ms/mx, NewSize/MaxNewSize)
2) 程序問題
單個程序持續進行消耗內存的處理,如循環幾千次的字符串處理,對字符串處理應建議使用StringBuffer。此時不會報內存溢出錯,卻會使系統持續垃圾收集,無法處理其它請求,相關問題程序可通過Thread Dump獲取(見系統問題診斷一章)單個程序所申請內存過大,有的程序會申請幾十乃至幾百兆內存,此時JVM也會因無法申請到資源而出現內存溢出,對此首先要找到相關功能,然后交予程序員修改,要找到相關程序,必須在Apache日志中尋找。
當Java對象使用完畢后,其所引用的對象卻沒有銷毀,使得JVM認為他還是活躍的對象而不進行回收,這樣累計占用了大量內存而無法釋放。由於目前市面上還沒有對系統影響小的內存分析工具,故此時只能和程序員一起定位。
2. Perm段溢出
通常由於Perm段裝載了大量的Servlet類而導致溢出,目前的解決辦法:
1) 將PermSize擴大,一般256M能夠滿足要求
2) 若別無選擇,則只能將servlet的路徑加到CLASSPATH中,但一般不建議這么處理
3. C Heap溢出
系統對C Heap沒有限制,故C Heap發生問題時,Java進程所占內存會持續增長,直到占用所有可用系統內存
其他:
JVM有2個GC線程。第一個線程負責回收Heap的Young區。第二個線程在Heap不足時,遍歷Heap,將Young 區升級為Older區。Older區的大小等於-Xmx減去-Xmn,不能將-Xms的值設的過大,因為第二個線程被迫運行會降低JVM的性能。
為什么一些程序頻繁發生GC?有如下原因:
l 程序內調用了System.gc()或Runtime.gc()。
l 一些中間件軟件調用自己的GC方法,此時需要設置參數禁止這些GC。
l Java的Heap太小,一般默認的Heap值都很小。
l 頻繁實例化對象,Release對象。此時盡量保存並重用對象,例如使用StringBuffer()和String()。
如果你發現每次GC后,Heap的剩余空間會是總空間的50%,這表示你的Heap處於健康狀態。許多Server端的Java程序每次GC后最好能有65%的剩余空間。
經驗之談:
1.Server端JVM最好將-Xms和-Xmx設為相同值。為了優化GC,最好讓-Xmn值約等於-Xmx的1/3[2]。
2.一個GUI程序最好是每10到20秒間運行一次GC,每次在半秒之內完成[2]。
注意:
1.增加Heap的大小雖然會降低GC的頻率,但也增加了每次GC的時間。並且GC運行時,所有的用戶線程將暫停,也就是GC期間,Java應用程序不做任何工作。
2.Heap大小並不決定進程的內存使用量。進程的內存使用量要大於-Xmx定義的值,因為Java為其他任務分配內存,例如每個線程的Stack等。
2.Stack的設定
每個線程都有他自己的Stack。
-Xss
|
每個線程的Stack大小
|
3.硬件環境
硬件環境也影響GC的效率,例如機器的種類,內存,swap空間,和CPU的數量。
如果你的程序需要頻繁創建很多transient對象,會導致JVM頻繁GC。這種情況你可以增加機器的內存,來減少Swap空間的使用[2]。
4.4種GC
第一種為單線程GC,也是默認的GC。,該GC適用於單CPU機器。
第二種為Throughput GC,是多線程的GC,適用於多CPU,使用大量線程的程序。第二種GC與第一種GC相似,不同在於GC在收集Young區是多線程的,但在Old區和第一種一樣,仍然采用單線程。-XX:+UseParallelGC參數啟動該GC。
第三種為Concurrent Low Pause GC,類似於第一種,適用於多CPU,並要求縮短因GC造成程序停滯的時間。這種GC可以在Old區的回收同時,運行應用程序。-XX:+UseConcMarkSweepGC參數啟動該GC。
第四種為Incremental Low Pause GC,適用於要求縮短因GC造成程序停滯的時間。這種GC可以在Young區回收的同時,回收一部分Old區對象。-Xincgc參數啟動該GC。
按照基本回收策略分
引用計數(Reference Counting):
比較古老的回收算法。原理是此對象有一個引用,即增加一個計數,刪除一個引用則減少一個計數。垃圾回收時,只用收集計數為0的對象。此算法最致命的是無法處理循環引用的問題。
標記-清除(Mark-Sweep):
此算法執行分兩階段。第一階段從引用根節點開始標記所有被引用的對象,第二階段遍歷整個堆,把未標記的對象清除。此算法需要暫停整個應用,同時,會產生內存碎片。
復制(Copying):
此算法把內存空間划為兩個相等的區域,每次只使用其中一個區域。垃圾回收時,遍歷當前使用區域,把正在使用中的對象復制到另外一個區域中。算法每次只處理正在使用中的對象,因此復制成本比較小,同時復制過去以后還能進行相應的內存整理,不會出現“碎片”問題。當然,此算法的缺點也是很明顯的,就是需要兩倍內存空間。
標記-整理(Mark-Compact):
此算法結合了“標記-清除”和“復制”兩個算法的優點。也是分兩階段,第一階段從根節點開始標記所有被引用對象,第二階段遍歷整個堆,把清除未標記對象並且把存活對象“壓縮”到堆的其中一塊,按順序排放。此算法避免了“標記-清除”的碎片問題,同時也避免了“復制”算法的空間問題。
按分區對待的方式分
增量收集(Incremental Collecting):實時垃圾回收算法,即:在應用進行的同時進行垃圾回收。不知道什么原因JDK5.0中的收集器沒有使用這種算法的。
分代收集(Generational Collecting):基於對對象生命周期分析后得出的垃圾回收算法。把對象分為年青代、年老代、持久代,對不同生命周期的對象使用不同的算法(上述方式中的一個)進行回收。現在的垃圾回收器(從J2SE1.2開始)都是使用此算法的。
按系統線程分
串行收集:串行收集使用單線程處理所有垃圾回收工作,因為無需多線程交互,實現容易,而且效率比較高。但是,其局限性也比較明顯,即無法使用多處理器的優勢,所以此收集適合單處理器機器。當然,此收集器也可以用在小數據量(100M左右)情況下的多處理器機器上。
並行收集:並行收集使用多線程處理垃圾回收工作,因而速度快,效率高。而且理論上CPU數目越多,越能體現出並行收集器的優勢。(串型收集的並發版本,需要暫停jvm) 並行paralise指的是多個任務在多個cpu中一起並行執行,最后將結果合並。效率是N倍。
並發收集:相對於串行收集和並行收集而言,前面兩個在進行垃圾回收工作時,需要暫停整個運行環境,而只有垃圾回收程序在運行,因此,系統在垃圾回收時會有明顯的暫停,而且暫停時間會因為堆越大而越長。(和並行收集不同,並發只有在開頭和結尾會暫停jvm)並發concurrent指的是多個任務在一個cpu偽同步執行,但其實是串行調度的,效率並非直接是N倍。
分代垃圾回收
分代的垃圾回收策略,是基於這樣一個事實:不同的對象的生命周期是不一樣的。因此,不同生命周期的對象可以采取不同的收集方式,以便提高回收效率。
在Java程序運行的過程中,會產生大量的對象,其中有些對象是與業務信息相關,比如Http請求中的Session對象、線程、Socket連接,這類對象跟業務直接掛鈎,因此生命周期比較長。但是還有一些對象,主要是程序運行過程中生成的臨時變量,這些對象生命周期會比較短,比如:String對象,由於其不變類的特性,系統會產生大量的這些對象,有些對象甚至只用一次即可回收。
試想,在不進行對象存活時間區分的情況下,每次垃圾回收都是對整個堆空間進行回收,花費時間相對會長,同時,因為每次回收都需要遍歷所有存活對象,但實際上,對於生命周期長的對象而言,這種遍歷是沒有效果的,因為可能進行了很多次遍歷,但是他們依舊存在。因此,分代垃圾回收采用分治的思想,進行代的划分,把不同生命周期的對象放在不同代上,不同代上采用最適合它的垃圾回收方式進行回收。
如圖所示:
虛擬機中的共划分為三個代:年輕代(Young Generation)、年老點(Old Generation)和持久代(Permanent Generation)。其中持久代主要存放的是Java類的類信息,與垃圾收集要收集的Java對象關系不大。年輕代和年老代的划分是對垃圾收集影響比較大的。
年輕代:
所有新生成的對象首先都是放在年輕代的。年輕代的目標就是盡可能快速的收集掉那些生命周期短的對象。年輕代分三個區。一個Eden區,兩個Survivor區(一般而言)。大部分對象在Eden區中生成。當Eden區滿時,還存活的對象將被復制到Survivor區(兩個中的一個),當這個Survivor區滿時,此區的存活對象將被復制到另外一個Survivor區,當這個Survivor區也滿了的時候,從第一個Survivor區復制過來的並且此時還存活的對象,將被復制“年老區(Tenured)”。需要注意,Survivor的兩個區是對稱的,沒先后關系,所以同一個區中可能同時存在從Eden復制過來 對象,和從前一個Survivor復制過來的對象,而復制到年老區的只有從第一個Survivor去過來的對象。而且,Survivor區總有一個是空的。同時,根據程序需要,Survivor區是可以配置為多個的(多於兩個),這樣可以增加對象在年輕代中的存在時間,減少被放到年老代的可能。
年老代:
在年輕代中經歷了N次垃圾回收后仍然存活的對象,就會被放到年老代中。因此,可以認為年老代中存放的都是一些生命周期較長的對象。
持久代:
用於存放靜態文件,如今Java類、方法等。持久代對垃圾回收沒有顯著影響,但是有些應用可能動態生成或者調用一些class,例如hibernate等,在這種時候需要設置一個比較大的持久代空間來存放這些運行過程中新增的類。持久代大小通過-XX:MaxPermSize=<N>進行設置。
什么情況下觸發垃圾回收
由於對象進行了分代處理,因此垃圾回收區域、時間也不一樣。GC有兩種類型:Scavenge GC和Full GC。
Scavenge GC
一般情況下,當新對象生成,並且在Eden申請空間失敗時,就會觸發Scavenge GC,對Eden區域進行GC,清除非存活對象,並且把尚且存活的對象移動到Survivor區。然后整理Survivor的兩個區。這種方式的GC是對年輕代的Eden區進行,不會影響到年老代。因為大部分對象都是從Eden區開始的,同時Eden區不會分配的很大,所以Eden區的GC會頻繁進行。因而,一般在這里需要使用速度快、效率高的算法,使Eden去能盡快空閑出來。
Full GC
對整個堆進行整理,包括Young、Tenured和Perm。Full GC因為需要對整個對進行回收,所以比Scavenge GC要慢,因此應該盡可能減少Full GC的次數。在對JVM調優的過程中,很大一部分工作就是對於FullGC的調節。有如下原因可能導致Full GC:
· 年老代(Tenured)被寫滿
· 持久代(Perm)被寫滿
· System.gc()被顯示調用
·上一次GC之后Heap的各域分配策略動態變化