Mysql表分區幾種方式


自5.1開始對分區(Partition)有支持,一張表最多1024個分區

查詢分區數據:

SELECT * from table PARTITION(p0)

 



= 水平分區(根據列屬性按行分)=
舉個簡單例子:一個包含十年發票記錄的表可以被分區為十個不同的分區,每個分區包含的是其中一年的記錄。

=== 水平分區的幾種模式:===
* Range(范圍) – 這種模式允許DBA將數據划分不同范圍。例如DBA可以將一個表通過年份划分成三個分區,80年代(1980's)的數據,90年代(1990's)的數據以及任何在2000年(包括2000年)后的數據。 

* Hash(哈希) – 這中模式允許DBA通過對表的一個或多個列的Hash Key進行計算,最后通過這個Hash碼不同數值對應的數據區域進行分區,。例如DBA可以建立一個對表主鍵進行分區的表。 

* Key(鍵值) – 上面Hash模式的一種延伸,這里的Hash Key是MySQL系統產生的。 

* List(預定義列表) – 這種模式允許系統通過DBA定義的列表的值所對應的行數據進行分割。例如:DBA建立了一個橫跨三個分區的表,分別根據2004年2005年和2006年值所對應的數據。 

* Composite(復合模式) - 很神秘吧,哈哈,其實是以上模式的組合使用而已,就不解釋了。舉例:在初始化已經進行了Range范圍分區的表上,我們可以對其中一個分區再進行hash哈希分區。 

= 垂直分區(按列分)=
舉個簡單例子:一個包含了大text和BLOB列的表,這些text和BLOB列又不經常被訪問,這時候就要把這些不經常使用的text和BLOB了划分到另一個分區,在保證它們數據相關性的同時還能提高訪問速度。


[分區表和未分區表試驗過程]

*創建分區表,按日期的年份拆分 

mysql> CREATE TABLE part_tab ( c1 int default NULL, c2 varchar(30) default NULL, c3 date default NULL) engine=myisam 
PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995),
PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) ,
PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) ,
PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) ,
PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) ,
PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010),
PARTITION p11 VALUES LESS THAN MAXVALUE ); 

 

注意最后一行,考慮到可能的最大值

*創建未分區表

mysql> create table no_part_tab (c1 int(11) default NULL,c2 varchar(30) default NULL,c3 date default NULL) engine=myisam;

 


*通過存儲過程灌入800萬條測試數據

mysql> set sql_mode=''; /* 如果創建存儲過程失敗,則先需設置此變量, bug? */

mysql> delimiter //   /* 設定語句終結符為 //,因存儲過程語句用;結束 */

mysql> CREATE PROCEDURE load_part_tab()
       begin
    declare v int default 0;
    while v < 8000000
    do
        insert into part_tab
        values (v,'testing partitions',adddate('1995-01-01',(rand(v)*36520) mod 3652));
         set v = v + 1;
    end while;
    end
    //
mysql> delimiter ;
mysql> call load_part_tab();

 

Query OK, 1 row affected (8 min 17.75 sec)

 
mysql> insert into no_part_tab select * from part_tab;

Query OK, 8000000 rows affected (51.59 sec)
Records: 8000000 Duplicates: 0 Warnings: 0

* 測試SQL性能

 
mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';

 

+----------+
| count(*) |
+----------+
|   795181 |
+----------+

1 row in set (0.55 sec)

 
mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';

 

+----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (4.69 sec)
結果表明分區表比未分區表的執行時間少90%。

* 通過explain語句來分析執行情況

mysql > explain select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G

 

/* 結尾的\G使得mysql的輸出改為列模式 */                    
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: no_part_tab
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 8000000
        Extra: Using where
1 row in set (0.00 sec)

 

 
mysql> explain select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G 

 

*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: part_tab
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 798458
        Extra: Using where
1 row in set (0.00 sec)
explain語句顯示了SQL查詢要處理的記錄數目

* 試驗創建索引后情況

mysql> create index idx_of_c3 on no_part_tab (c3);

 

Query OK, 8000000 rows affected (1 min 18.08 sec)
Records: 8000000 Duplicates: 0 Warnings: 0

mysql> create index idx_of_c3 on part_tab (c3);

 

Query OK, 8000000 rows affected (1 min 19.19 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
創建索引后的數據庫文件大小列表:
2008-05-24 09:23             8,608 no_part_tab.frm
2008-05-24 09:24       255,999,996 no_part_tab.MYD
2008-05-24 09:24        81,611,776 no_part_tab.MYI
2008-05-24 09:25                 0 part_tab#P#p0.MYD
2008-05-24 09:26             1,024 part_tab#P#p0.MYI
2008-05-24 09:26        25,550,656 part_tab#P#p1.MYD
2008-05-24 09:26         8,148,992 part_tab#P#p1.MYI
2008-05-24 09:26        25,620,192 part_tab#P#p10.MYD
2008-05-24 09:26         8,170,496 part_tab#P#p10.MYI
2008-05-24 09:25                 0 part_tab#P#p11.MYD
2008-05-24 09:26             1,024 part_tab#P#p11.MYI
2008-05-24 09:26        25,656,512 part_tab#P#p2.MYD
2008-05-24 09:26         8,181,760 part_tab#P#p2.MYI
2008-05-24 09:26        25,586,880 part_tab#P#p3.MYD
2008-05-24 09:26         8,160,256 part_tab#P#p3.MYI
2008-05-24 09:26        25,585,696 part_tab#P#p4.MYD
2008-05-24 09:26         8,159,232 part_tab#P#p4.MYI
2008-05-24 09:26        25,585,216 part_tab#P#p5.MYD
2008-05-24 09:26         8,159,232 part_tab#P#p5.MYI
2008-05-24 09:26        25,655,740 part_tab#P#p6.MYD
2008-05-24 09:26         8,181,760 part_tab#P#p6.MYI
2008-05-24 09:26        25,586,528 part_tab#P#p7.MYD
2008-05-24 09:26         8,160,256 part_tab#P#p7.MYI
2008-05-24 09:26        25,586,752 part_tab#P#p8.MYD
2008-05-24 09:26         8,160,256 part_tab#P#p8.MYI
2008-05-24 09:26        25,585,824 part_tab#P#p9.MYD
2008-05-24 09:26         8,159,232 part_tab#P#p9.MYI
2008-05-24 09:25             8,608 part_tab.frm
2008-05-24 09:25                68 part_tab.par

* 再次測試SQL性能

mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';

 

+----------+
| count(*) |
+----------+
|   795181 |
+----------+

1 row in set (2.42 sec)   /* 為原來4.69 sec 的51%*/   


重啟mysql ( net stop mysql, net start mysql)后,查詢時間降為0.89 sec,幾乎與分區表相同。

mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'; 

 

+----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (0.86 sec)

* 更進一步的試驗
** 增加日期范圍

 

mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';

 

 

 

+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (5.42 sec)

mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';

 

+----------+
| count(*) |
+----------+
| 2396524 |
+----------+

1 row in set (2.63 sec)


** 增加未索引字段查詢

mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date
'1996-12-31' and c2='hello';

 

+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.75 sec)

mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1996-12-31' and c2='hello';

 

+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (11.52 sec)


= 初步結論 =
* 分區和未分區占用文件空間大致相同 (數據和索引文件)
* 如果查詢語句中有未建立索引字段,分區時間遠遠優於未分區時間
* 如果查詢語句中字段建立了索引,分區和未分區的差別縮小,分區略優於未分區。


= 最終結論 =
* 對於大數據量,建議使用分區功能。
* 去除不必要的字段
* 根據手冊, 增加myisam_max_sort_file_size 會增加分區性能

[分區命令詳解]

= 分區例子 = 
* RANGE 類型

CREATE TABLE users (
       uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
       name VARCHAR(30) NOT NULL DEFAULT '',
       email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY RANGE (uid) (
       PARTITION p0 VALUES LESS THAN (3000000)
       DATA DIRECTORY = '/data0/data'
       INDEX DIRECTORY = '/data1/idx',

       PARTITION p1 VALUES LESS THAN (6000000)
       DATA DIRECTORY = '/data2/data'
       INDEX DIRECTORY = '/data3/idx',

       PARTITION p2 VALUES LESS THAN (9000000)
       DATA DIRECTORY = '/data4/data'
       INDEX DIRECTORY = '/data5/idx',

       PARTITION p3 VALUES LESS THAN MAXVALUE     DATA DIRECTORY = '/data6/data' 
       INDEX DIRECTORY = '/data7/idx'
);

 

在這里,將用戶表分成4個分區,以每300萬條記錄為界限,每個分區都有自己獨立的數據、索引文件的存放目錄,與此同時,這些目錄所在的物理磁盤分區可能也都是完全獨立的,可以提高磁盤IO吞吐量。
      
* LIST 類型

 

CREATE TABLE category (
     cid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY LIST (cid) (
     PARTITION p0 VALUES IN (0,4,8,12)
     DATA DIRECTORY = '/data0/data' 
     INDEX DIRECTORY = '/data1/idx',
     
     PARTITION p1 VALUES IN (1,5,9,13)
     DATA DIRECTORY = '/data2/data'
     INDEX DIRECTORY = '/data3/idx',
     
     PARTITION p2 VALUES IN (2,6,10,14)
     DATA DIRECTORY = '/data4/data'
     INDEX DIRECTORY = '/data5/idx',
     
     PARTITION p3 VALUES IN (3,7,11,15)
     DATA DIRECTORY = '/data6/data'
     INDEX DIRECTORY = '/data7/idx'
);   

 

分成4個區,數據文件和索引文件單獨存放。

* HASH 類型     

CREATE TABLE users (
     uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT '',
     email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY HASH (uid) PARTITIONS 4 (
     PARTITION p0
     DATA DIRECTORY = '/data0/data'
     INDEX DIRECTORY = '/data1/idx',

     PARTITION p1
     DATA DIRECTORY = '/data2/data'
     INDEX DIRECTORY = '/data3/idx',

     PARTITION p2
     DATA DIRECTORY = '/data4/data'
     INDEX DIRECTORY = '/data5/idx',

     PARTITION p3
     DATA DIRECTORY = '/data6/data'
     INDEX DIRECTORY = '/data7/idx'
);

 

分成4個區,數據文件和索引文件單獨存放。

例子:

CREATE TABLE ti2 (id INT, amount DECIMAL(7,2), tr_date DATE)
    ENGINE=myisam
    PARTITION BY HASH( MONTH(tr_date) )
    PARTITIONS 6;

CREATE PROCEDURE load_ti2()
       begin
    declare v int default 0;
    while v < 80000
    do
        insert into ti2
        values (v,'3.14',adddate('1995-01-01',(rand(v)*3652) mod 365));
         set v = v + 1;
    end while;
    end
    //

 


* KEY 類型

CREATE TABLE users (
     uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT '',
     email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY KEY (uid) PARTITIONS 4 (
     PARTITION p0
     DATA DIRECTORY = '/data0/data'
     INDEX DIRECTORY = '/data1/idx',
     
     PARTITION p1
     DATA DIRECTORY = '/data2/data' 
     INDEX DIRECTORY = '/data3/idx',
     
     PARTITION p2 
     DATA DIRECTORY = '/data4/data'
     INDEX DIRECTORY = '/data5/idx',
     
     PARTITION p3 
     DATA DIRECTORY = '/data6/data'
     INDEX DIRECTORY = '/data7/idx'
);   

 

分成4個區,數據文件和索引文件單獨存放。

* 子分區
子分區是針對 RANGE/LIST 類型的分區表中每個分區的再次分割。再次分割可以是 HASH/KEY 等類型。例如:

CREATE TABLE users (
     uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT '',
     email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY RANGE (uid) SUBPARTITION BY HASH (uid % 4) SUBPARTITIONS 2(
     PARTITION p0 VALUES LESS THAN (3000000)
     DATA DIRECTORY = '/data0/data'
     INDEX DIRECTORY = '/data1/idx',

     PARTITION p1 VALUES LESS THAN (6000000)
     DATA DIRECTORY = '/data2/data'
     INDEX DIRECTORY = '/data3/idx'
);

 

對 RANGE 分區再次進行子分區划分,子分區采用 HASH 類型。
或者

CREATE TABLE users (
     uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT '',
     email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY RANGE (uid) SUBPARTITION BY KEY(uid) SUBPARTITIONS 2(
     PARTITION p0 VALUES LESS THAN (3000000)
     DATA DIRECTORY = '/data0/data'
     INDEX DIRECTORY = '/data1/idx',

     PARTITION p1 VALUES LESS THAN (6000000)
     DATA DIRECTORY = '/data2/data'
     INDEX DIRECTORY = '/data3/idx'
);

 

對 RANGE 分區再次進行子分區划分,子分區采用 KEY 類型。

= 分區管理 =

    * 刪除分區  

ALERT TABLE users DROP PARTITION p0;

 

      刪除分區 p0。


    * 重建分區
          o RANGE 分區重建

ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES LESS THAN (6000000));

 

            將原來的 p0,p1 分區合並起來,放到新的 p0 分區中。
          o LIST 分區重建

 

ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES IN(0,1,4,5,8,9,12,13));

 

 

 

            將原來的 p0,p1 分區合並起來,放到新的 p0 分區中。
          o HASH/KEY 分區重建

 

 ALTER TABLE users REORGANIZE PARTITION COALESCE PARTITION 2;

 

 

 

            用 REORGANIZE 方式重建分區的數量變成2,在這里數量只能減少不能增加。想要增加可以用 ADD PARTITION 方法。
    * 新增分區
          o 新增 RANGE 分區   

 ALTER TABLE category ADD PARTITION (PARTITION p4 VALUES IN (16,17,18,19)
            DATA DIRECTORY = '/data8/data'
            INDEX DIRECTORY = '/data9/idx');

 

            新增一個RANGE分區。
          o 新增 HASH/KEY 分區

 
ALTER TABLE users ADD PARTITION PARTITIONS 8;

 

            將分區總數擴展到8個。

[ 給已有的表加上分區 ]

alter table results partition by RANGE (month(ttime)) 
(PARTITION p0 VALUES LESS THAN (1),
PARTITION p1 VALUES LESS THAN (2) , PARTITION p2 VALUES LESS THAN (3) ,
PARTITION p3 VALUES LESS THAN (4) , PARTITION p4 VALUES LESS THAN (5) ,
PARTITION p5 VALUES LESS THAN (6) , PARTITION p6 VALUES LESS THAN (7) ,
PARTITION p7 VALUES LESS THAN (8) , PARTITION p8 VALUES LESS THAN (9) ,
PARTITION p9 VALUES LESS THAN (10) , PARTITION p10 VALUES LESS THAN (11),
PARTITION p11 VALUES LESS THAN (12),
PARTITION P12 VALUES LESS THAN (13) ); 



默認分區限制分區字段必須是主鍵(PRIMARY KEY)的一部分,為了去除此
限制:
[方法1] 使用ID

mysql> ALTER TABLE np_pk
    ->     PARTITION BY HASH( TO_DAYS(added) )
    ->     PARTITIONS 4;

 

ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

However, this statement using the id column for the partitioning column is valid, as shown here:

 

mysql> ALTER TABLE np_pk
    ->     PARTITION BY HASH(id)
    ->     PARTITIONS 4;

 

 

 

Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

[方法2] 將原有PK去掉生成新PK

mysql> alter table results drop PRIMARY KEY;

 

Query OK, 5374850 rows affected (7 min 4.05 sec)
Records: 5374850 Duplicates: 0 Warnings: 0

mysql> alter table results add PRIMARY KEY(id, ttime);

 

Query OK, 5374850 rows affected (6 min 14.86 sec)

Records: 5374850 Duplicates: 0 Warnings: 0

 

查詢表分區:

select partition_name , subpartition_name from information_schema.partitions where table_schema='你的數據庫名' and table_name='你的表名'; (這個語句可以查到你的表的分區名是什么,1級分區和2級分區都可以看)

查詢分區數據:

select * from 表 partition (分區表名); -->不管是1級分區還是2級分區都是用partition


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM