基於Caffe的DeepID2實現(下)


小喵的嘮叨話:這次的博客,真心累傷了小喵的心。但考慮到知識需要鞏固和分享,小喵決定這次把剩下的內容都寫完。

小喵的博客:http://www.miaoerduo.com

博客原文: http://www.miaoerduo.com/deep-learning/基於caffe的deepid2實現(下).html ‎

四、數據的重整,簡單的划分

前面的Data層用於生成成對的輸入數據,Normalization層,用於將feature歸一化,那么之后是不是就可以使用ContrastiveLoss層進行訓練了呢?

且慢,還差一步。

ContrastiveLoss層要求有3個bottom:feature1、feature2以及表示對位的feature是否為同一個identity的label。

我們現在得到的feature卻是所有的都在一起,data層直接得到的label也和這里要求的label不同。因此務必要對數據進行一次重整。

一個簡單的規則就是按照奇偶,將feature划分成兩部分。這樣得到的兩部分正好就是相同位置為一對。對於label的重整,也可以用類似的方法。小喵這里只對feature進行重整,而label的處理則是通過改ContrastiveLoss層來實現。

feature的重整本質上就是一個切片的操作,這里命名為id2_slice_layer,實現方法就是按照奇偶把bottom的數據復制到top。后饋的時候,也就是將兩部分的feature的diff都直接復制到對應位置的bottom_diff中,具體實現如下:

 1 // created by miao
 2 #ifndef CAFFE_ID2_SLICE_LAYER_HPP_
 3 #define CAFFE_ID2_SLICE_LAYER_HPP_
 4 
 5 #include <vector>
 6 
 7 #include "caffe/blob.hpp"
 8 #include "caffe/layer.hpp"
 9 #include "caffe/proto/caffe.pb.h"
10 
11 namespace caffe {
12 
13 /**
14  * @brief Takes a Blob and slices it along either the num or channel dimension,
15  *        outputting multiple sliced Blob results.
16  *
17  * TODO(dox): thorough documentation for Forward, Backward, and proto params.
18  */
19 template <typename Dtype>
20 class Id2SliceLayer : public Layer<Dtype> {
21  public:
22   explicit Id2SliceLayer(const LayerParameter& param)
23       : Layer<Dtype>(param) {}
24   virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
25       const vector<Blob<Dtype>*>& top);
26   virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
27       const vector<Blob<Dtype>*>& top);
28 
29   virtual inline const char* type() const { return "Id2Slice"; }
30   virtual inline int ExactNumBottomBlobs() const { return 1; }
31   virtual inline int MinTopBlobs() const { return 1; }
32 
33  protected:
34   virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
35       const vector<Blob<Dtype>*>& top);
36   virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
37       const vector<Blob<Dtype>*>& top);
38   virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
39       const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
40   virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
41       const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
42 };
43 
44 }  // namespace caffe
45 
46 #endif  // CAFFE_ID2_SLICE_LAYER_HPP_

頭文件,巨簡單。。。

Cpp的代碼,也非常簡單,要注意id2_slice層的top有兩個,每個的形狀都是bottom的一半。

 1 // created by miao
 2 #include <algorithm>
 3 #include <vector>
 4 
 5 #include "caffe/layers/id2_slice_layer.hpp"
 6 #include "caffe/util/math_functions.hpp"
 7 
 8 namespace caffe {
 9 
10 template <typename Dtype>
11 void Id2SliceLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
12       const vector<Blob<Dtype>*>& top) {
13 }
14 
15 template <typename Dtype>
16 void Id2SliceLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
17       const vector<Blob<Dtype>*>& top) {
18     vector<int> top_shape = bottom[0]->shape();
19     top_shape[0] /= 2;
20     top[0]->Reshape(top_shape);
21     top[1]->Reshape(top_shape);
22 }
23 
24 template <typename Dtype>
25 void Id2SliceLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
26       const vector<Blob<Dtype>*>& top) {
27     const int feature_size = bottom[0]->count(1);
28     for (int n = 0; n < bottom[0]->num(); ++ n) {
29         caffe_copy(
30                 feature_size, 
31                 bottom[0]->cpu_data() + n * feature_size, 
32                 top[n & 1]->mutable_cpu_data() + (n / 2) * feature_size
33                 );
34     }
35 }
36 
37 template <typename Dtype>
38 void Id2SliceLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
39       const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
40     const int feature_size = bottom[0]->count(1);
41     for (int n = 0; n < bottom[0]->num(); ++ n) {
42         caffe_copy(
43                 feature_size,
44                 top[n & 1]->cpu_diff() + (n / 2) * feature_size,
45                 bottom[0]->mutable_cpu_diff() + n * feature_size
46                 );
47     }
48 }
49 
50 #ifdef CPU_ONLY
51 STUB_GPU(Id2SliceLayer);
52 #endif
53 
54 INSTANTIATE_CLASS(Id2SliceLayer);
55 REGISTER_LAYER_CLASS(Id2Slice);
56 
57 }  // namespace caffe

GPU上的實現,為了簡單起見,也是直接調用了CPU的前饋函數。

 1 // created by miao
 2 #include <vector>
 3 
 4 #include "caffe/layers/id2_slice_layer.hpp"
 5 #include "caffe/util/math_functions.hpp"
 6 
 7 namespace caffe {
 8 template <typename Dtype>
 9 void Id2SliceLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
10       const vector<Blob<Dtype>*>& top) {
11     this->Forward_cpu(bottom, top);
12 }
13 
14 template <typename Dtype>
15 void Id2SliceLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
16       const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
17     this->Backward_cpu(top, propagate_down, bottom);
18 }
19 
20 INSTANTIATE_LAYER_GPU_FUNCS(Id2SliceLayer);
21 
22 }  // namespace caffe

這樣就完成了feature的重整。由於沒有用到新的參數,因此也不需要修改caffe.proto。

親可以仿照這個方法對label來做類似的操作。鑒於小喵比較懶。。。這里就只是簡單的改ContrastiveLoss層的代碼了。

第一步,在ContrastiveLossLayer中新增一個用於記錄feature pair是否是同一個identity的成員變量,取代原本的第三個bottom的功能。這樣只需要在前饋的時候提前算好,就可以代替之前的第三個bottom來使用,而不需要再修改別的地方的代碼。

為了大家使用的方便,小喵直接把修改之后的頭文件粘貼出來(刪掉注釋)。新增的行,用“added by miao”這個注釋標注出來。頭文件只加了一行。

 1 #ifndef CAFFE_CONTRASTIVE_LOSS_LAYER_HPP_
 2 #define CAFFE_CONTRASTIVE_LOSS_LAYER_HPP_
 3 
 4 #include <vector>
 5 
 6 #include "caffe/blob.hpp"
 7 #include "caffe/layer.hpp"
 8 #include "caffe/proto/caffe.pb.h"
 9 
10 #include "caffe/layers/loss_layer.hpp"
11 
12 namespace caffe {
13 template <typename Dtype>
14 class ContrastiveLossLayer : public LossLayer<Dtype> {
15  public:
16   explicit ContrastiveLossLayer(const LayerParameter& param)
17       : LossLayer<Dtype>(param), diff_() {}
18   virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
19       const vector<Blob<Dtype>*>& top);
20 
21   virtual inline int ExactNumBottomBlobs() const { return 3; }
22   virtual inline const char* type() const { return "ContrastiveLoss"; }
23   virtual inline bool AllowForceBackward(const int bottom_index) const {
24     return bottom_index != 2;
25   }
26  protected:
27   /// @copydoc ContrastiveLossLayer
28   virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
29       const vector<Blob<Dtype>*>& top);
30   virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
31       const vector<Blob<Dtype>*>& top);
32   virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
33       const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
34   virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
35       const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
36 
37   Blob<Dtype> diff_;  // cached for backward pass
38   Blob<Dtype> dist_sq_;  // cached for backward pass
39   Blob<Dtype> diff_sq_;  // tmp storage for gpu forward pass
40   Blob<Dtype> summer_vec_;  // tmp storage for gpu forward pass
41   Blob<Dtype> is_same_; // added by miao
42 };
43 }  // namespace caffe
44 
45 #endif  // CAFFE_CONTRASTIVE_LOSS_LAYER_HPP_

源文件的修改也十分簡單,這里只貼出來Cuda的部分。源文件,修改了與原來的bottom3相關的地方。

  1 #include <algorithm>
  2 #include <vector>
  3 #include <iostream>
  4 #include "caffe/layers/contrastive_loss_layer.hpp"
  5 #include "caffe/util/math_functions.hpp"
  6 
  7 namespace caffe {
  8 
  9 template <typename Dtype>
 10 void ContrastiveLossLayer<Dtype>::Forward_gpu(
 11     const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
 12   const int count = bottom[0]->count();
 13   caffe_gpu_sub(
 14       count,
 15       bottom[0]->gpu_data(),  // a
 16       bottom[1]->gpu_data(),  // b
 17       diff_.mutable_gpu_data());  // a_i-b_i
 18   caffe_gpu_powx(
 19       count,
 20       diff_.mutable_gpu_data(),  // a_i-b_i
 21       Dtype(2),
 22       diff_sq_.mutable_gpu_data());  // (a_i-b_i)^2
 23   caffe_gpu_gemv(
 24       CblasNoTrans,
 25       bottom[0]->num(),
 26       bottom[0]->channels(),
 27       Dtype(1.0),
 28       diff_sq_.gpu_data(),  // (a_i-b_i)^2
 29       summer_vec_.gpu_data(),
 30       Dtype(0.0),
 31       dist_sq_.mutable_gpu_data());  // \Sum (a_i-b_i)^2
 32   Dtype margin = this->layer_param_.contrastive_loss_param().margin();
 33   bool legacy_version =
 34       this->layer_param_.contrastive_loss_param().legacy_version();
 35   Dtype loss(0.0);
 36   for (int i = 0; i < bottom[0]->num(); ++i) {
 37     // added by miao
 38     is_same_.mutable_cpu_data()[i] = (bottom[2]->cpu_data()[2 * i] == bottom[2]->cpu_data()[2 * i + 1])? 1:0;
 39     if (is_same_.cpu_data()[i] == 1) {  // similar pairs
 40       loss += dist_sq_.cpu_data()[i];
 41     } else {  // dissimilar pairs
 42       if (legacy_version) {
 43         loss += std::max(margin - dist_sq_.cpu_data()[i], Dtype(0.0));
 44       } else {
 45         Dtype dist = std::max(margin - sqrt(dist_sq_.cpu_data()[i]),
 46                               Dtype(0.0));
 47         loss += dist*dist;
 48       }
 49     }
 50   }
 51   loss = loss / static_cast<Dtype>(bottom[0]->num()) / Dtype(2);
 52   top[0]->mutable_cpu_data()[0] = loss;
 53 }
 54 
 55 template <typename Dtype>
 56 __global__ void CLLBackward(const int count, const int channels,
 57     const Dtype margin, const bool legacy_version, const Dtype alpha,
 58     const Dtype* y, const Dtype* diff, const Dtype* dist_sq,
 59     Dtype *bottom_diff) {
 60   CUDA_KERNEL_LOOP(i, count) {
 61     int n = i / channels;  // the num index, to access y and dist_sq
 62     if (static_cast<int>(y[n])) {  // similar pairs
 63       bottom_diff[i] = alpha * diff[i];
 64     } else {  // dissimilar pairs
 65       Dtype mdist(0.0);
 66       Dtype beta(0.0);
 67       if (legacy_version) {
 68         mdist = (margin - dist_sq[n]);
 69         beta = -alpha;
 70       } else {
 71         Dtype dist = sqrt(dist_sq[n]);
 72         mdist = (margin - dist);
 73         beta = -alpha * mdist / (dist + Dtype(1e-4)) * diff[i];
 74       }
 75       if (mdist > 0.0) {
 76         bottom_diff[i] = beta;
 77       } else {
 78         bottom_diff[i] = 0;
 79       }
 80     }
 81   }
 82 }
 83 
 84 template <typename Dtype>
 85 void ContrastiveLossLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
 86     const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
 87   for (int i = 0; i < 2; ++i) {
 88     if (propagate_down[i]) {
 89       const int count = bottom[0]->count();
 90       const int channels = bottom[0]->channels();
 91       Dtype margin = this->layer_param_.contrastive_loss_param().margin();
 92       const bool legacy_version =
 93           this->layer_param_.contrastive_loss_param().legacy_version();
 94       const Dtype sign = (i == 0) ? 1 : -1;
 95       const Dtype alpha = sign * top[0]->cpu_diff()[0] /
 96           static_cast<Dtype>(bottom[0]->num());
 97       // NOLINT_NEXT_LINE(whitespace/operators)
 98       CLLBackward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(
 99           count, channels, margin, legacy_version, alpha,
100           is_same_.gpu_data(),  // pair similarity 0 or 1  added by miao
101           diff_.gpu_data(),  // the cached eltwise difference between a and b
102           dist_sq_.gpu_data(),  // the cached square distance between a and b
103           bottom[i]->mutable_gpu_diff());
104       CUDA_POST_KERNEL_CHECK;
105     }
106   }
107 }
108 
109 INSTANTIATE_LAYER_GPU_FUNCS(ContrastiveLossLayer);
110 
111 }  // namespace caffe

需要注意的時候,前饋和后饋都需要做一點代碼上的修改,雖說十分的簡單,但也要小心。

 

至此,基於Caffe的DeepID2的修改全部完成。

 

如果您覺得本文對您有幫助,那請小喵喝杯茶吧~~O(∩_∩)O~~

%e6%89%93%e8%b5%8f

 

轉載請注明出處~


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM