Socket網絡編程
socket通常也稱作"套接字",用於描述IP地址和端口,是一個通信鏈的句柄,應用程序通常通過"套接字"向網絡發出請求或者應答網絡請求。
socket起源於Unix,而Unix/Linux基本哲學之一就是“一切皆文件”,對於文件用打開、讀寫、關閉模式來操作。socket就是該模式的一個實現,socket即是一種特殊的文件,一些socket函數就是對其進行的操作(讀/寫IO、打開、關閉)
socket和file的區別:
file模塊是針對某個指定文件進行打開、讀寫、關閉
socket模塊是針對 服務器端 和 客戶端Socket 進行打開、讀寫、關閉
Socket的英文原義是“孔”或“插座”。Socket正如其英文原意那樣,像一個多孔插座。一台主機猶如布滿各種插座的房間,每個插座有一個編號,有的插座提供220伏交流電, 有的提供110伏交流電,有的則提供有線電視節目。 客戶軟件將插頭插到不同編號的插座,就可以得到不同的服務。
我知道上面那段話很枯燥,那就忘記吧!我們只需要記得:兩個程序通過“網絡”交互數據就使用socket,它只負責兩件事:建立連接,傳遞數據。不能再簡練了!!!
一個完整的socket通信流程大致如下圖所示

實際socket服務器和和客戶端通信的過程有些類似日常生活中撥打電話的過程,需要有手機,有電話卡,開機,撥號,建立連接,發送消息一直到通話結束,中間也有其他人打進電話的情況出現,
這個跟socket客戶端連接服務器端,服務器端正在連接客戶端時會將新進來的連接放到連接池中處於等待狀態,下面看下代碼怎么實現的:


下面來實現最簡單的一對一撥打電話過程
Client端

建立連接,輸入交互命令

Server端

socket的實現就像是打電話的過程,接收電話的是server端,撥打電話是client端,send和recv中的內容就是我們要發送和接受的東西,那么准備好了要發送的東西,我們要告訴手機打電話的目標電話,看server中的sock.bind方法,這里面傳了一個元組('ip','port')給bind方法,就是把自己的電話開機處於接聽狀態;而client端的obj_client.connect方法是告訴自己手機終端,去找哪個號碼建立通信。所以這個元組中的ip和port內容必須一致,是接聽和撥打電話雙方約定好的。我send的內容無所謂是什么,我send什么,客戶端就recv什么,因為我發送的什么,接收到的就是什么,他沒有權利
左右我發送什么東西。
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: Jason Wang import socket import subprocess #導入執行命令模塊 ip_port=('127.0.0.1',9999) #定義元祖 #買手機 s=socket.socket() #綁定協議,生成套接字 s.bind(ip_port) #綁定ip+協議+端口:用來唯一標識一個進程,ip_port必須是元組格式 s.listen(5) #定義最大可以掛起鏈接數 #等待電話 while True: #用來重復接收新的鏈接 conn,addr=s.accept() #接收客戶端胡的接請求,返回conn(相當於一個特定胡鏈接),addr是客戶端ip+port conn.sendall(bytes('歡迎致電 10086,請輸入1xxx,0轉人工服務.',encoding='utf-8')) #收消息 while True: #用來基於一個鏈接重復收發消息 try: #捕捉客戶端異常關閉(ctrl+c) recv_data=conn.recv(1024) #收消息,阻塞 if len(recv_data) == 0:break #客戶端如果退出,服務端將收到空消息,退出 #發消息 p=subprocess.Popen(str(recv_data,encoding='utf8'),shell=True,stdout=subprocess.PIPE) #執行系統命令,windows平 # 台命令的標准輸出是gbk編碼,需要轉換 res=p.stdout.read() #獲取標准輸出 if len(res) == 0: #執行錯誤命令,標准輸出為空, send_data='cmd err' # else: # send_data=str(res,encoding='gbk') #命令執行ok,字節gbk---->str---->字節utf-8 print(str) send_data=bytes(str(res,encoding='utf8'),encoding='utf8') #解決粘包問題 ready_tag='Ready|%s' %len(send_data) conn.send(bytes(ready_tag,encoding='utf8')) #發送數據長度 feedback=conn.recv(1024) #接收確認信息 feedback=str(feedback,encoding='utf8') if feedback.startswith('Start'): conn.send(send_data) #發送命令的執行結果 except Exception: break #掛電話 conn.close()
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: Jason Wang import socket ip_port=('127.0.0.1',9999) #買手機 s=socket.socket() #撥號 s.connect(ip_port) #鏈接服務端,如果服務已經存在一個好的連接,那么掛起 welcom_msg = s.recv(200).decode()#獲取服務端歡迎消息 print(welcom_msg) while True: #基於connect建立的連接來循環發送消息 send_data=input(">>: ").strip() if send_data == 'exit':break if len(send_data) == 0:continue s.send(bytes(send_data,encoding='utf8')) #解決粘包問題 ready_tag=s.recv(1024) #收取帶數據長度的字節:Ready|9998 ready_tag=str(ready_tag,encoding='utf8') if ready_tag.startswith('Ready'):#Ready|9998 msg_size=int(ready_tag.split('|')[-1]) #獲取待接收數據長度 start_tag='Start' s.send(bytes(start_tag,encoding='utf8')) #發送確認信息 #基於已經收到的待接收數據長度,循環接收數據 recv_size=0 recv_msg=b'' while recv_size < msg_size: recv_data=s.recv(1024) recv_msg+=recv_data recv_size+=len(recv_data) print('MSG SIZE %s RECE SIZE %s' %(msg_size,recv_size)) print(str(recv_msg,encoding='utf8')) #掛電話 s.close()
WEB服務應用:
#!/usr/bin/env python
#coding:utf-8
import socket
def handle_request(client):
buf = client.recv(1024)
client.send("HTTP/1.1 200 OK\r\n\r\n")
client.send("Hello, World")
def main():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('localhost',8080))
sock.listen(5)
while True:
connection, address = sock.accept()
handle_request(connection)
connection.close()
if __name__ == '__main__':
main()
更多功能
sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM,0)
參數一:地址簇 socket.AF_INET IPv4(默認) socket.AF_INET6 IPv6 socket.AF_UNIX 只能夠用於單一的Unix系統進程間通信 參數二:類型 socket.SOCK_STREAM 流式socket , for TCP (默認) socket.SOCK_DGRAM 數據報式socket , for UDP socket.SOCK_RAW 原始套接字,普通的套接字無法處理ICMP、IGMP等網絡報文,而SOCK_RAW可以;其次,SOCK_RAW也可以處理特殊的IPv4報文;此外,利用原始套接字,可以通過IP_HDRINCL套接字選項由用戶構造IP頭。 socket.SOCK_RDM 是一種可靠的UDP形式,即保證交付數據報但不保證順序。SOCK_RAM用來提供對原始協議的低級訪問,在需要執行某些特殊操作時使用,如發送ICMP報文。SOCK_RAM通常僅限於高級用戶或管理員運行的程序使用。 socket.SOCK_SEQPACKET 可靠的連續數據包服務 參數三:協議 0 (默認)與特定的地址家族相關的協議,如果是 0 ,則系統就會根據地址格式和套接類別,自動選擇一個合適的協議
import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) sk.bind(ip_port) while True: data = sk.recv(1024) print data import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) while True: inp = raw_input('數據:').strip() if inp == 'exit': break sk.sendto(inp,ip_port) sk.close()
sk.bind(address)
s.bind(address) 將套接字綁定到地址。address地址的格式取決於地址族。在AF_INET下,以元組(host,port)的形式表示地址。
sk.listen(backlog)
開始監聽傳入連接。backlog指定在拒絕連接之前,可以掛起的最大連接數量。
backlog等於5,表示內核已經接到了連接請求,但服務器還沒有調用accept進行處理的連接個數最大為5
這個值不能無限大,因為要在內核中維護連接隊列
sk.setblocking(bool)
是否阻塞(默認True),如果設置False,那么accept和recv時一旦無數據,則報錯。
sk.accept()
接受連接並返回(conn,address),其中conn是新的套接字對象,可以用來接收和發送數據。address是連接客戶端的地址。
接收TCP 客戶的連接(阻塞式)等待連接的到來
sk.connect(address)
連接到address處的套接字。一般,address的格式為元組(hostname,port),如果連接出錯,返回socket.error錯誤。
sk.connect_ex(address)
同上,只不過會有返回值,連接成功時返回 0 ,連接失敗時候返回編碼,例如:10061
sk.close()
關閉套接字
sk.recv(bufsize[,flag])
接受套接字的數據。數據以字符串形式返回,bufsize指定最多可以接收的數量。flag提供有關消息的其他信息,通常可以忽略。
sk.recvfrom(bufsize[.flag])
與recv()類似,但返回值是(data,address)。其中data是包含接收數據的字符串,address是發送數據的套接字地址。
sk.send(string[,flag])
#Python 2將string中的數據發送到連接的套接字。返回值是要發送的字節數量,該數量可能小於string的字節大小。即:可能未將指定內容全部發送。
#Python 3必須轉換為字節形式bytes發送
sk.sendall(string[,flag])
#將string中的數據發送到連接的套接字,但在返回之前會嘗試發送所有數據。成功返回None,失敗則拋出異常。
#Python 3必須轉換為字節形式bytes發送
內部通過遞歸調用send,將所有內容發送出去。
sk.sendto(string[,flag],address)
將數據發送到套接字,address是形式為(ipaddr,port)的元組,指定遠程地址。返回值是發送的字節數。該函數主要用於UDP協議。
sk.settimeout(timeout)
設置套接字操作的超時期,timeout是一個浮點數,單位是秒。值為None表示沒有超時期。一般,超時期應該在剛創建套接字時設置,因為它們可能用於連接的操作(如 client 連接最多等待5s )
sk.getpeername()
返回連接套接字的遠程地址。返回值通常是元組(ipaddr,port)。
sk.getsockname()
返回套接字自己的地址。通常是一個元組(ipaddr,port)
sk.fileno()
套接字的文件描述符
SocketServer模塊
SocketServer內部使用 IO多路復用 以及 “多線程” 和 “多進程” ,從而實現並發處理多個客戶端請求的Socket服務端。即:每個客戶端請求連接到服務器時,Socket服務端都會在服務器是創建一個“線程”或者“進程” 專門負責處理當前客戶端的所有請求。

ThreadingTCPServer
ThreadingTCPServer實現的Soket服務器內部會為每個client創建一個 “線程”,該線程用來和客戶端進行交互。
1、ThreadingTCPServer基礎
使用ThreadingTCPServer:
- 創建一個繼承自 SocketServer.BaseRequestHandler 的類
- 類中必須定義一個名稱為 handle 的方法
- 啟動ThreadingTCPServer
#!/usr/bin/env python # -*- coding:utf-8 -*- import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self): # print self.request,self.client_address,self.server conn = self.request conn.sendall('歡迎致電 10086,請輸入1xxx,0轉人工服務.') Flag = True while Flag: data = conn.recv(1024) if data == 'exit': Flag = False elif data == '0': conn.sendall('通過可能會被錄音.balabala一大推') else: conn.sendall('請重新輸入.') if __name__ == '__main__': server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyServer) server.serve_forever()
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009) sk = socket.socket() sk.connect(ip_port) sk.settimeout(5) while True: data = sk.recv(1024) print 'receive:',data inp = raw_input('please input:') sk.sendall(inp) if inp == 'exit': break sk.close()
2、ThreadingTCPServer源碼剖析

內部調用流程為:
- 啟動服務端程序
- 執行 TCPServer.__init__ 方法,創建服務端Socket對象並綁定 IP 和 端口
- 執行 BaseServer.__init__ 方法,將自定義的繼承自SocketServer.BaseRequestHandler 的類 MyRequestHandle賦值給self.RequestHandlerClass
- 執行 BaseServer.server_forever 方法,While 循環一直監聽是否有客戶端請求到達 ...
- 當客戶端連接到達服務器
- 執行 ThreadingMixIn.process_request 方法,創建一個 “線程” 用來處理請求
- 執行 ThreadingMixIn.process_request_thread 方法
- 執行 BaseServer.finish_request 方法,執行 self.RequestHandlerClass() 即:執行 自定義 MyRequestHandler 的構造方法(自動調用基類BaseRequestHandler的構造方法,在該構造方法中又會調用 MyRequestHandler的handle方法)
ThreadingTCPServer相關源碼:
class BaseServer: """Base class for server classes. Methods for the caller: - __init__(server_address, RequestHandlerClass) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you do not use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - server_close() - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - allow_reuse_address Instance variables: - RequestHandlerClass - socket """ timeout = None def __init__(self, server_address, RequestHandlerClass): """Constructor. May be extended, do not override.""" self.server_address = server_address self.RequestHandlerClass = RequestHandlerClass self.__is_shut_down = threading.Event() self.__shutdown_request = False def server_activate(self): """Called by constructor to activate the server. May be overridden. """ pass def serve_forever(self, poll_interval=0.5): """Handle one request at a time until shutdown. Polls for shutdown every poll_interval seconds. Ignores self.timeout. If you need to do periodic tasks, do them in another thread. """ self.__is_shut_down.clear() try: while not self.__shutdown_request: # XXX: Consider using another file descriptor or # connecting to the socket to wake this up instead of # polling. Polling reduces our responsiveness to a # shutdown request and wastes cpu at all other times. r, w, e = _eintr_retry(select.select, [self], [], [], poll_interval) if self in r: self._handle_request_noblock() finally: self.__shutdown_request = False self.__is_shut_down.set() def shutdown(self): """Stops the serve_forever loop. Blocks until the loop has finished. This must be called while serve_forever() is running in another thread, or it will deadlock. """ self.__shutdown_request = True self.__is_shut_down.wait() # The distinction between handling, getting, processing and # finishing a request is fairly arbitrary. Remember: # # - handle_request() is the top-level call. It calls # select, get_request(), verify_request() and process_request() # - get_request() is different for stream or datagram sockets # - process_request() is the place that may fork a new process # or create a new thread to finish the request # - finish_request() instantiates the request handler class; # this constructor will handle the request all by itself def handle_request(self): """Handle one request, possibly blocking. Respects self.timeout. """ # Support people who used socket.settimeout() to escape # handle_request before self.timeout was available. timeout = self.socket.gettimeout() if timeout is None: timeout = self.timeout elif self.timeout is not None: timeout = min(timeout, self.timeout) fd_sets = _eintr_retry(select.select, [self], [], [], timeout) if not fd_sets[0]: self.handle_timeout() return self._handle_request_noblock() def _handle_request_noblock(self): """Handle one request, without blocking. I assume that select.select has returned that the socket is readable before this function was called, so there should be no risk of blocking in get_request(). """ try: request, client_address = self.get_request() except socket.error: return if self.verify_request(request, client_address): try: self.process_request(request, client_address) except: self.handle_error(request, client_address) self.shutdown_request(request) def handle_timeout(self): """Called if no new request arrives within self.timeout. Overridden by ForkingMixIn. """ pass def verify_request(self, request, client_address): """Verify the request. May be overridden. Return True if we should proceed with this request. """ return True def process_request(self, request, client_address): """Call finish_request. Overridden by ForkingMixIn and ThreadingMixIn. """ self.finish_request(request, client_address) self.shutdown_request(request) def server_close(self): """Called to clean-up the server. May be overridden. """ pass def finish_request(self, request, client_address): """Finish one request by instantiating RequestHandlerClass.""" self.RequestHandlerClass(request, client_address, self) def shutdown_request(self, request): """Called to shutdown and close an individual request.""" self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" pass def handle_error(self, request, client_address): """Handle an error gracefully. May be overridden. The default is to print a traceback and continue. """ print '-'*40 print 'Exception happened during processing of request from', print client_address import traceback traceback.print_exc() # XXX But this goes to stderr! print '-'*40
class TCPServer(BaseServer): """Base class for various socket-based server classes. Defaults to synchronous IP stream (i.e., TCP). Methods for the caller: - __init__(server_address, RequestHandlerClass, bind_and_activate=True) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you don't use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - request_queue_size (only for stream sockets) - allow_reuse_address Instance variables: - server_address - RequestHandlerClass - socket """ address_family = socket.AF_INET socket_type = socket.SOCK_STREAM request_queue_size = 5 allow_reuse_address = False def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): """Constructor. May be extended, do not override.""" BaseServer.__init__(self, server_address, RequestHandlerClass) self.socket = socket.socket(self.address_family, self.socket_type) if bind_and_activate: try: self.server_bind() self.server_activate() except: self.server_close() raise def server_bind(self): """Called by constructor to bind the socket. May be overridden. """ if self.allow_reuse_address: self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(self.server_address) self.server_address = self.socket.getsockname() def server_activate(self): """Called by constructor to activate the server. May be overridden. """ self.socket.listen(self.request_queue_size) def server_close(self): """Called to clean-up the server. May be overridden. """ self.socket.close() def fileno(self): """Return socket file number. Interface required by select(). """ return self.socket.fileno() def get_request(self): """Get the request and client address from the socket. May be overridden. """ return self.socket.accept() def shutdown_request(self, request): """Called to shutdown and close an individual request.""" try: #explicitly shutdown. socket.close() merely releases #the socket and waits for GC to perform the actual close. request.shutdown(socket.SHUT_WR) except socket.error: pass #some platforms may raise ENOTCONN here self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" request.close()
class ThreadingMixIn: """Mix-in class to handle each request in a new thread.""" # Decides how threads will act upon termination of the # main process daemon_threads = False def process_request_thread(self, request, client_address): """Same as in BaseServer but as a thread. In addition, exception handling is done here. """ try: self.finish_request(request, client_address) self.shutdown_request(request) except: self.handle_error(request, client_address) self.shutdown_request(request) def process_request(self, request, client_address): """Start a new thread to process the request.""" t = threading.Thread(target = self.process_request_thread, args = (request, client_address)) t.daemon = self.daemon_threads t.start()
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass
RequestHandler相關源碼
lass BaseRequestHandler: """Base class for request handler classes. This class is instantiated for each request to be handled. The constructor sets the instance variables request, client_address and server, and then calls the handle() method. To implement a specific service, all you need to do is to derive a class which defines a handle() method. The handle() method can find the request as self.request, the client address as self.client_address, and the server (in case it needs access to per-server information) as self.server. Since a separate instance is created for each request, the handle() method can define arbitrary other instance variariables. """ def __init__(self, request, client_address, server): self.request = request self.client_address = client_address self.server = server self.setup() try: self.handle() finally: self.finish() def setup(self): pass def handle(self): pass def finish(self): pass
實例
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: Jason Wang import socketserver import subprocess class MyServer(socketserver.BaseRequestHandler): def handle(self): self.request.sendall(bytes('歡迎致電10086,請輸入1xx,0轉入人工服務',encoding='utf-8')) while True: data = self.request.recv(1024) print('------>%s'%(len(data))) if len(data) == 0: break print("[%s] says:%s" %(self.client_address,data.decode())) #self.request.sendall(data.upper()) cmd = subprocess.Popen(data.decode(),shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE) cmd_res = cmd.stdout.read() if not cmd_res: cmd_res = cmd.stderr.read() if len(cmd_res) == 0:#cmd has no output cmd_res = bytes('cmd has output',encoding='utf-8') # self.request.sendall(data.upper()) self.request.send(cmd_res) if __name__ == '__main__': server = socketserver.ThreadingTCPServer(('0.0.0.0',9999),MyServer) server.serve_forever()
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: Jason Wang import socket ip_port=('0.0.0.0',9999) #買手機 s=socket.socket() #撥號 s.connect(ip_port) #發送消息 welcome_msg = s.recv(1024) print("from server:",welcome_msg.decode()) while True: send_data=input(">>: ").strip() if len(send_data) == 0:continue s.send(bytes(send_data,encoding='utf8')) #收消息 recv_data=s.recv(1024) print(str(recv_data,encoding='utf8')) #掛電話 s.close()
源碼精簡:
import socket
import threading
import select
def process(request, client_address):
print request,client_address
conn = request
conn.sendall('歡迎致電 10086,請輸入1xxx,0轉人工服務.')
flag = True
while flag:
data = conn.recv(1024)
if data == 'exit':
flag = False
elif data == '0':
conn.sendall('通過可能會被錄音.balabala一大推')
else:
conn.sendall('請重新輸入.')
sk = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sk.bind(('127.0.0.1',8002))
sk.listen(5)
while True:
r, w, e = select.select([sk,],[],[],1)
print 'looping'
if sk in r:
print 'get request'
request, client_address = sk.accept()
t = threading.Thread(target=process, args=(request, client_address))
t.daemon = False
t.start()
sk.close()
如精簡代碼可以看出,SocketServer的ThreadingTCPServer之所以可以同時處理請求得益於 select 和 Threading 兩個東西,其實本質上就是在服務器端為每一個客戶端創建一個線程,當前線程用來處理對應客戶端的請求,所以,可以支持同時n個客戶端鏈接(長連接)。
ForkingTCPServer
ForkingTCPServer和ThreadingTCPServer的使用和執行流程基本一致,只不過在內部分別為請求者建立 “線程” 和 “進程”。
基本使用:
ForkingTCPServer只是將 ThreadingTCPServer 實例中的代碼:
server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyRequestHandler)
變更為:
server = SocketServer.ForkingTCPServer(('127.0.0.1',8009),MyRequestHandler)
SocketServer的ThreadingTCPServer之所以可以同時處理請求得益於 select 和 os.fork 兩個東西,其實本質上就是在服務器端為每一個客戶端創建一個進程,當前新創建的進程用來處理對應客戶端的請求,所以,可以支持同時n個客戶端鏈接(長連接)。
源碼剖析參考 ThreadingTCPServer
參考:
socket詳解:http://www.cnblogs.com/wupeiqi/articles/5040823.html
TCP和UDP協議的區別:http://jingyan.baidu.com/article/6dad5075df3452a123e36ecb.html
