from: http://www.xuebuyuan.com/582331.html
簡單的通過特征點分類的方法:
一、train
1.提取+/- sample的feature,每幅圖提取出的sift特征個數不定(假設每個feature有128維)
2.利用聚類方法(e.g K-means)將不定數量的feature聚類為固定數量的(比如10個)words即BOW(bag of word)
(本篇文章主要完成以上的工作!)
3.normalize,並作這10個類的直方圖e.g [0.1,0.2,0.7,0...0];
4.將each image的這10個word作為feature_instance 和 (手工標記的) label(+/-)進入SVM訓練
二、predict
1. 提取test_img的feature(如137個)
2. 分別求each feature與10個類的距離(e.g. 128維歐氏距離),確定該feature屬於哪個類
3. normalize,並作這10個類的直方圖e.g [0,0.2,0.2,0.6,0...0];
4. 應用SVM_predict進行結果預測
通過OpenCV實現feature聚類 BOW
首先在此介紹一下OpenCV的特征描述符與BOW的通用函數。
主要的通用接口有:
1.特征點提取
Ptr<FeatureDetector> FeatureDetector::create(const string& detectorType)
Ptr<FeatureDetector> FeatureDetector::create(const string& detectorType) // "FAST" – FastFeatureDetector // "STAR" – StarFeatureDetector // "SIFT" – SIFT (nonfree module)//必須使用 initModule_nonfree()初始化 // "SURF" – SURF (nonfree module)//同上; // "ORB" – ORB // "MSER" – MSER // "GFTT" – GoodFeaturesToTrackDetector // "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled // "Dense" – DenseFeatureDetector // "SimpleBlob" – SimpleBlobDetector
根據以上接口,測試不同的特征點:
對同一幅圖像進行水平翻轉前后的兩幅圖像檢測特征點檢測結果,
檢測到的特征點的坐標類型為:pt: int / float(與keyPoint的性質有關)
數量分別為num1, num2,
"FAST" – FastFeatureDetector pt:int (num1:615 num2:618)
"STAR" – StarFeatureDetector pt:int (num1:43 num2:42 )
"SIFT" – SIFT (nonfree module) pt:float(num1:155 num2:135) //必須使用 initModule_nonfree()初始化
"SURF" – SURF (nonfree module) pt:float(num1:344 num2:342)
//同上;
"ORB" – ORB pt:float(num1:496 num2:497)
"MSER" – MSER pt:float(num1:51 num2:45 )
"GFTT" – GoodFeaturesToTrackDetector pt:int (num1:744 num2:771)
"HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled pt:float(num1:162 num2:160)
"Dense" – DenseFeatureDetector pt:int (num1:3350 num2:3350)
2.特征描述符提取
Ptr<DescriptorExtractor> DescriptorExtractor::create(const string& descriptorExtractorType)
// Ptr<DescriptorExtractor> DescriptorExtractor::create(const string& descriptorExtractorType) // "SIFT" – SIFT // "SURF" – SURF // "ORB" – ORB // "BRIEF" – BriefDescriptorExtractor
3.描述符匹配
Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create(const string& descriptorMatcherType)
// descriptorMatcherType – Descriptor matcher type. // Now the following matcher types are supported: // BruteForce (it uses L2 ) // BruteForce-L1 // BruteForce-Hamming // BruteForce-Hamming(2) // FlannBased Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );
4.class BOWTrainer
class BOWKmeansTrainer::public BOWTrainer:Kmeans算法訓練
BOWKMeansTrainer ::BOWKmeansTrainer(int clusterCount, const TermCriteria& termcrit=TermCriteria(), int attempts=3, int flags=KMEANS_PP_CENTERS)¶
parameter same as
Kmeans
代碼實現:
1.畫特征點。
2.特征點Kmeans聚類,每一種顏色代表一個類別。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include <iostream>
using namespace cv;
using namespace std;
#define ClusterNum 10
void DrawAndMatchKeypoints(const Mat& Img1,const Mat& Img2,const vector<KeyPoint>& Keypoints1,
const vector<KeyPoint>& Keypoints2,const Mat& Descriptors1,const Mat& Descriptors2)
{
Mat keyP1,keyP2;
drawKeypoints(Img1,Keypoints1,keyP1,Scalar::all(-1),0);
drawKeypoints(Img2,Keypoints2,keyP2,Scalar::all(-1),0);
putText(keyP1, "drawKeyPoints", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));
putText(keyP2, "drawKeyPoints", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));
imshow("img1 keyPoints",keyP1);
imshow("img2 keyPoints",keyP2);
Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );
vector<DMatch> matches;
descriptorMatcher->match( Descriptors1, Descriptors2, matches );
Mat show;
drawMatches(Img1,Keypoints1,Img2,Keypoints2,matches,show,Scalar::all(-1),CV_RGB(255,255,255),Mat(),4);
putText(show, "drawMatchKeyPoints", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));
imshow("match",show);
}
//測試OpenCV:class BOWTrainer
void BOWKeams(const Mat& img, const vector<KeyPoint>& Keypoints,
const Mat& Descriptors, Mat& centers)
{
//BOW的kmeans算法聚類;
BOWKMeansTrainer bowK(ClusterNum,
cvTermCriteria (CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 0.1),3,2);
centers = bowK.cluster(Descriptors);
cout<<endl<<"< cluster num: "<<centers.rows<<" >"<<endl;
Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );
vector<DMatch> matches;
descriptorMatcher->match(Descriptors,centers,matches);//const Mat& queryDescriptors, const Mat& trainDescriptors第一個參數是待分類節點,第二個參數是聚類中心;
Mat demoCluster;
img.copyTo(demoCluster);
//為每一類keyPoint定義一種顏色
Scalar color[]={CV_RGB(255,255,255),
CV_RGB(255,0,0),CV_RGB(0,255,0),CV_RGB(0,0,255),
CV_RGB(255,255,0),CV_RGB(255,0,255),CV_RGB(0,255,255),
CV_RGB(123,123,0),CV_RGB(0,123,123),CV_RGB(123,0,123)};
for (vector<DMatch>::iterator iter=matches.begin();iter!=matches.end();iter++)
{
cout<<"< descriptorsIdx:"<<iter->queryIdx<<" centersIdx:"<<iter->trainIdx
<<" distincs:"<<iter->distance<<" >"<<endl;
Point center= Keypoints[iter->queryIdx].pt;
circle(demoCluster,center,2,color[iter->trainIdx],-1);
}
putText(demoCluster, "KeyPoints Clustering: 一種顏色代表一種類型",
cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));
imshow("KeyPoints Clusrtering",demoCluster);
}
int main()
{
cv::initModule_nonfree();//使用SIFT/SURF create之前,必須先initModule_<modulename>();
cout << "< Creating detector, descriptor extractor and descriptor matcher ...";
Ptr<FeatureDetector> detector = FeatureDetector::create( "SIFT" );
Ptr<DescriptorExtractor> descriptorExtractor = DescriptorExtractor::create( "SIFT" );
Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );
cout << ">" << endl;
if( detector.empty() || descriptorExtractor.empty() )
{
cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl;
return -1;
}
cout << endl << "< Reading images..." << endl;
Mat img1 = imread("D:/demo0.jpg");
Mat img2 = imread("D:/demo1.jpg");
cout<<endl<<">"<<endl;
//detect keypoints;
cout << endl << "< Extracting keypoints from images..." << endl;
vector<KeyPoint> keypoints1,keypoints2;
detector->detect( img1, keypoints1 );
detector->detect( img2, keypoints2 );
cout <<"img1:"<< keypoints1.size() << " points img2:" <<keypoints2.size()
<< " points" << endl << ">" << endl;
//compute descriptors for keypoints;
cout << "< Computing descriptors for keypoints from images..." << endl;
Mat descriptors1,descriptors2;
descriptorExtractor->compute( img1, keypoints1, descriptors1 );
descriptorExtractor->compute( img2, keypoints2, descriptors2 );
cout<<endl<<"< Descriptoers Size: "<<descriptors2.size()<<" >"<<endl;
cout<<endl<<"descriptor's col: "<<descriptors2.cols<<endl
<<"descriptor's row: "<<descriptors2.rows<<endl;
cout << ">" << endl;
//Draw And Match img1,img2 keypoints
//匹配的過程是對特征點的descriptors進行match;
DrawAndMatchKeypoints(img1,img2,keypoints1,keypoints2,descriptors1,descriptors2);
Mat center;
//對img1提取特征點,並聚類
//測試OpenCV:class BOWTrainer
BOWKeams(img1,keypoints1,descriptors1,center);
waitKey();
}

通過Qt實現DrawKeypoints:
void Qt_test1::on_DrawKeypoints_clicked()
{
//initModule_nonfree();
Ptr<FeatureDetector> detector = FeatureDetector::create( "FAST" );
vector<KeyPoint> keypoints;
detector->detect( src, keypoints );
Mat DrawKeyP;
drawKeypoints(src,keypoints,DrawKeyP,Scalar::all(-1),0);
putText(DrawKeyP, "drawKeyPoints", cvPoint(10,30),
FONT_HERSHEY_SIMPLEX, 0.5 ,Scalar :: all(255));
cvtColor(DrawKeyP, image, CV_RGB2RGBA);
QImage img = QImage((const unsigned char*)(image.data),
image.cols, image.rows, QImage::Format_RGB32);
QLabel *label = new QLabel(this);
label->move(50, 50);//圖像在窗口中所處的位置;
label->setPixmap(QPixmap::fromImage(img));
label->resize(label->pixmap()->size());
label->show();
}

由於initModule_nonfree()總是出錯,無法對SIFT與SURF特征點提取,
而且無法實現聚類因為運行/BOW的kmeans算法聚類:BOWKMeansTrainer bowK(ClusterNum, cvTermCriteria (CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 0.1),3,2);總是出錯,不知道咋解決~~~~~(>_<)~~~~ 需要繼續學習
