python dataframe 針對多列執行map操作


Suppose I have a df which has columns of 'ID', 'col_1', 'col_2'. And I define a function :

 f = lambda x, y : my_function_expression.

Now I want to apply the f to df's two columns 'col_1', 'col_2' to element-wise calculate a new column 'col_3' , somewhat like :  

df['col_3'] = df[['col_1','col_2']].apply(f)

How to do ?

譯文:怎么同時對列 col_1 和 col_2 執行map操作,生成新的一列?

答:

Here's an example using apply on the dataframe, which I am calling with axis = 1.

Note the difference is that instead of trying to pass two values to the function f, rewrite the function to accept a pandas Series object, and then index the Series to get the values needed.

In [49]: df
Out[49]: 
          0         1
0  1.000000  0.000000
1 -0.494375  0.570994
2  1.000000  0.000000
3  1.876360 -0.229738
4  1.000000  0.000000

In [50]: def f(x):    
   ....:  return x[0] + x[1]  
   ....:  

In [51]: df.apply(f, axis=1) #passes a Series object, row-wise
Out[51]: 
0    1.000000
1    0.076619
2    1.000000
3    1.646622
4    1.000000

Depending on your use case, it is sometimes helpful to create a pandas group object, and then use apply on the group.

譯文:利用apply函數,在apply函數參數處指定自定義函數.自定義函數同時對多列進行計算,返回計算結果即可,詳見代碼.

來源:stackoverflow


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM