第1章 使用R語言
#machine learing for heckers
#chapter 1
library(ggplot2) library(plyr)
#.tsv文件用制表符進行分割
#字符串默認為factor類型,因此stringsAsFactors置FALSE防止轉換
#header置FALSE防止將第一行當做表頭
#定義空字符串為NA:na.strings = ""
ufo <- read.delim("ML_for_Hackers/01-Introduction/data/ufo/ufo_awesome.tsv", sep = "\t", stringsAsFactors = FALSE, header = FALSE, na.strings = "")
查看數據集前6行
tail() 可查看后6行
#names()既可以寫入列名,也可以讀取列名
names(ufo) <- c("DateOccurred", "DateReported", "Location", "ShortDescription", "Duration", "LongDescription")
#as.Date用法,可以將字符串轉為Date對象,具體格式可以設定,參考help
#錯誤:輸入過長,考慮有畸形數據
#畸形數據處理
head(ufo[which(nchar(ufo$DateOccurred) != 8 | nchar(ufo$DateReported) != 8), 1])
#新建向量,布爾值F為不符合要求的行
#計數不符要求的行數,並只留下符合要求的行
good.rows <- ifelse(nchar(ufo$DateOccurred) != 8 | nchar(ufo$DateReported) != 8, FALSE, TRUE) length(which(!good.rows)) ufo <- ufo[good.rows, ]
運行結果是731條,而書上是371條,應該是書上有誤
#轉換
ufo$DateOccurred <- as.Date(ufo$DateOccurred, format = "%Y%m%d") ufo$DateReported <- as.Date(ufo$DateReported, format = "%Y%m%d")
#輸入為字符串,進行目擊地點清洗
#strsplit用於分割字符串,在遇到不符條件的字符串會拋出異常,由tryCatch捕獲,並返回缺失
#gsub將原始數據中的空格去掉(通過替換)
#條件語句用於檢查是否多個逗號,返回缺失
get.location <- function(l){ split.location <- tryCatch(strsplit(l, ",")[[1]], error = function(e) return(c(NA, NA))) clean.location <- gsub("^ ", "", split.location) if(length(clean.location) > 2){ return(c(NA, NA)) } else{ return(clean.location) } }
#lapply(list-apply)將function逐一用到向量元素上,並返回鏈表(list)
city.state <- lapply(ufo$Location, get.location)
#將list轉換成matrix
#do.call在一個list上執行一個函數調用
#transform函數給ufo創建兩個新列,tolower函數將大寫變小寫,為了統一格式
location.matrix <- do.call(rbind, city.state) ufo <- transform(ufo, USCity = location.matrix[, 1], USState = tolower(location.matrix[, 2]), stringsAsFactors = FALSE)
#識別非美國地名,並置為NA
us.states <- c("ak", "al", "ar", "az", "ca", "co", "ct", "de", "fl", "ga", "hi", "ia", "id", "il", "in", "ks", "ky", "la", "ma", "md", "me", "mi", "mn", "mo", "ms", "mt", "nc", "nd", "ne", "nh", "nj", "nm", "nv", "ny", "oh", "ok", "or", "pa", "ri", "sc", "sd", "tn", "tx", "ut", "va", "vt", "wa", "wi", "wv", "wy") ufo$USState <- us.states[match(ufo$USState, us.states)] ufo$USCity[is.na(ufo$USState)] <- NA
#只留下美國境內的記錄
ufo.us <- subset(ufo, !is.na(USState))
#對時間維度進行分析:
#預處理:對時間范圍進行概述
summary(ufo.us$DateOccurred) quick.hist <- ggplot(ufo.us, aes(x = DateOccurred)) + geom_histogram() + scale_x_date(date_breaks = "50 years") print(quick.hist)
#取出1990年后的數據並作圖
ufo.us <- subset(ufo.us, DateOccurred >= as.Date("1990-01-01")) quick.hist.new <- ggplot(ufo.us, aes(x = DateOccurred)) + geom_histogram() + scale_x_date(date_breaks = "50 years") print(quick.hist.new)
#統計每個年-月的目擊個數
#時間信息轉化為以月為單位,每個月的目擊次數的數據框
#產生一個以月為單位的序列,包含了所有月信息,並與地點相結合生成數據框
ufo.us$YearMonth <- strftime(ufo.us$DateOccurred, format = "%Y-%m") sightings.counts <- ddply(ufo.us, .(USState, YearMonth), nrow) date.range <- seq.Date(from = as.Date(min(ufo.us$DateOccurred)), to = as.Date(max(ufo.us$DateOccurred)), by = "month") date.strings <- strftime(date.range, "%Y-%m") states.dates <- lapply(us.states, function(s) cbind(s, date.strings)) states.dates <- data.frame(do.call(rbind, states.dates), stringsAsFactors = FALSE)
#將兩個數據框合並,merge函數,傳入兩個數據框,可以將相同的列合並,by.x和by.y指定列名
#all置為TRUE可以將未匹配處填充為NA
#進一步將all.sithtings細節優化,包括缺失值置0和轉化變量類型
all.sightings <- merge(states.dates, sightings.counts, by.x = c("s", "date.strings"), by.y = c("USState", "YearMonth"), all = TRUE) names(all.sightings) <- c("State", "YearMonth", "Sightings") all.sightings$Sightings[is.na(all.sightings$Sightings)] <- 0 all.sightings$YearMonth <- as.Date(rep(date.range, length(us.states))) all.sightings$State <- as.factor(toupper(all.sightings$State))
#分析數據
#geom_line表示曲線圖,facet_wrap用於創建分塊繪制的圖形,並使用分類變量State
#theme_bw設定了圖形背景主題
#scale_color_manual定義第二行中字符串"darkblue"的值,這個值相當於"darkblue"對應的值
state.plot <- ggplot(all.sightings, aes(x = YearMonth, y = Sightings)) + geom_line(aes(color = "darkblue")) + facet_wrap(~State, nrow = 10, ncol = 5) + theme_bw() + scale_color_manual(values = c("darkblue" = "darkblue"), guide = "none") + xlab("Time") + ylab("Number of Sightings") + ggtitle("Number of UFO sightings by Month-Year and U.S. State (1990-2010)") print(state.plot)