mongodb常見問題


1、count統計結果錯誤

這是由於分布式集群正在遷移數據,它導致count結果值錯誤,需要使用aggregate pipeline來得到正確統計結果,例如:

db.collection.aggregate([{$group: {_id: null, count: {$sum: 1}}}])

引用:“On a sharded cluster, count can result in an inaccurate count if orphaned documents exist or if a chunk migration is in progress.”

2、從shell中更新/寫入到文檔的數字,會變為float類型

引用:“shell中的數字都被MongoDB當作是雙精度數。這意味着如果你從數據庫中獲得的是一個32位整數,修改文檔后,將文檔存回數據庫的時候,這個整數也就被換成了浮點數,即便保持這個整數原封不動也會這樣的。”

3、restore數據到新DB時,不要去先建索引

把bson數據文件restore到另一個DB時,需要注意:不能先創建索引再restore數據,否則性能極差,mongorestore工具默認會在restore完數據時,根據dump出來的index信息創建索引,無須自己創建,如果是要更換索引,也應該在數據入庫完之后再創建。

4、DB中的namespace數量太多導致無法創建新的collection

錯誤提示:error: hashtable namespace index max chain reached:1335,如何解決呢?

這是DB中的collection個數太多導致,在實踐中以每個collection 8KB計算(跟官方文檔里說的不同,可能跟index有關系),256MB可以支持36000個collection。db.system.namespaces.count() 命令可以統計當前DB內的collection數目,DB可支持collection數量是由於nssize參數指定的,它指定了dbname.ns磁盤文件的大小,也就指定了DB可支持的最大collection數目,ns為namespace縮寫。默認nssize為16MB。

如果重啟MongoD並修改了nssize參數,這新nssize只會對新加入的DB生效,對以前已經存在的DB不生效,如果你想對已經存在的DB采用新的nssize,必須在加大nssize重啟之后新建DB,然后把舊DB的collection 復制到新DB中。

namespace限制相關文檔:http://docs.mongodb.org/manual/reference/limits/#Number-of-Namespaces

5、moveChunk因舊數據未刪除而失敗

錯誤日志:”moveChunk failed to engage TO-shard in the data transfer: can't accept new chunks because there are still 1 deletes from previous migration“。

意思是說,當前正要去接受新chunk 的shard正在刪除上一次數據遷移出的數據,不能接受新Chunk,於是本次遷移失敗。這種log里顯示的是warning,但有時候會發現shard的刪除持續了十幾天都沒完成,查看日志,可以發現同一個chunk的刪除在不斷重復執行,重啟所有無法接受新chunk的shard可以解決這個問題。

如果采用了balancer自動均衡,那么可以加上_waitForDelete參數,如:

{ "_id" : "balancer", "activeWindow" : { "start" : "12:00", "stop" : "19:30" }, "stopped" : false, "_waitForDelete" : true }

這樣就不會因delete堆積而導致后續migrate失敗,當然,需要考慮到這里的阻塞是否會影響到程序正常運轉,在實踐中慎重采用使用waitForDelete,因為發現加上它之后遷移性能非常差,可能出現卡住十幾個小時的情況,外界拿住了被遷移chunk的游標句柄,這時候刪除不能執行,阻塞了后續其它遷移操作。

游標被打開而導致被遷移數據無法及時刪除時的日志:

2015-03-07T10:21:20.118+0800 [RangeDeleter] rangeDeleter waiting for open cursors in: cswuyg_test.cswuyg_test,
 min: { _id: -6665031702664277348 }, max: { _id: -6651575076051867067 }, elapsedSecs: 6131244, cursors: [ 220477635588 ]

這可能會卡住幾十小時,甚至一直卡住,影響后續的moveChunk操作,導致數據不均衡。

解決方法還是:重啟。

6、bson size不能超過16MB的限制

單個文檔的BSON size不能超過16MB。find查詢有時會遇到16MB的限制,譬如使用$in 查詢的時候,in中的數組元素不能太多。對一些特殊的數據源做MapReduce,MapReduce中間會將數據組合為“KEY:[VALUE1、VALUE2]”這樣的格式,當value特別多的時候,也可能會遇上16MB的限制。

限制無處不在,需要注意,”The issue is that the 16MB document limit applies to everything - documents you store, documents MapReduce tries to generate, documents aggregation tries to return, etc.

7、批量插入

批量插入可以減少數據往服務器的提交次數,提高性能,一般批量提交的BSON size不超過48MB,如果超過了,驅動程序自動修改為往mongos的多次提交。

8、安全寫入介紹及其沿革

關鍵字:acknowledge、write concern。

在2012年11月之前,MongoDB驅動、shell客戶端默認是不安全寫入,也就是fire-and-forget,動作發出之后,不關心是否真的寫入成功,如果這時候出現了_id重復、非UTF8字符等異常,客戶端不會知道。在2012年11月之后,默認為安全寫入,安全級別相當於參數w=1,客戶端可以知道寫入操作是否成功。如果代碼使用Mongo或者Collection來連接數據庫,則說明它是默認不安全寫入的legacy代碼,安全寫入已經把連接數據庫修改為MongoClient接口。

安全寫入可以分為三個級別:

第一級是默認的安全寫入,確認數據寫入到內存中就返回(w=N屬於這一級);

第二級是Journal save,數據在寫入到DB磁盤文件之前,MongoDB會先把操作寫入到Journal文件,這一級指的是確認寫入了Journal文件就返回;

第三級是fysnc,所有數據刷寫到到DB磁盤文件才返回。

一般第一級就足夠了,第二級是為了保證在機器異常斷電的情況下也不會丟失數據。安全寫入要付出性能的代碼:不安全寫入的性能大概是默認安全寫入的3倍。使用fync參數則性能更差,一般不使用。

如果是副本集(replica set),其w=N參數,N表示安全寫入到多少個副本集才返回。

9、善用索引——可能跟你以為的不一樣

使用組合索引的時候,如果有兩組索引,在限量查詢的情況下,可能跟常規的認識不同:

利用組合索引做的查詢,在不同數量級下會有不同性能:

組合索引A: {"age": 1, "username": 1}

組合索引B: {"username": 1, "age": 1}

全量查詢: db.user.find({"age": {"$gte": 21, "$lte": 30}}).sort({"username" :1}),使用索引A的性能優於索引B。

限量查詢: db.user.find({"age": {"$gte": 21, "$lte": 30}}).sort({"username": 1}).limit(1000),使用索引B的性能優於索引A。

這兩個查詢在使用索引A的時候,是先根據age索引找到符合age的數據,然后再對這些結果做排序。使用索引B的時候,是遍歷name,對應的數據判斷age,然后得到的結果是name有序的。

優先使用sort key索引,在大多數應用上執行得很好。

10、查詢時索引位置的無順序性

做find的時候,並不要求索引一定要在前面,

譬如:

db.test集合中對R有索引
db.test.find({R:"AA", "H": "BB"}).limit(100).explain()
db.test.find({"H":"BB", R" : "AA"}).limit(100).explain()

這兩個查找性能一樣,它都會使用R索引。

11、使用組合索引做shard key可以大幅度提高集群性能

“固定值+增量值” 兩字段做組合索引可以有效的實現分布式集群中的分散多熱點寫入、讀取。以下為讀書筆記:在單個MongoDB實例上,最高效的寫入是順序寫入,而MongoDB集群則要求寫入能隨機,以便平均分散到多個MongoDB實例。所以最高效的寫入是有

多個局部熱點:在多個MongoDB實例之間是分散寫入,在實例內部是順序寫入。 要實現這一點,我們采用組合索引。

例如:shardkey的第一部分是很粗糙的,可選集很少的字段,索引的第二部分是遞增字段,當數據增加到一定程度時,會出現很多第一部分相同第二部分不同的chunk,數據只會在最后一個chunk里寫入數據,當第一部分不同的chunk分散在多個shard上,就實現了多熱點的寫入。如果在一個shard上,不止一個chunk可以寫入數據,那也就是說不止一個熱點,當熱點非常多的時候,也就等同於無熱點的隨機寫入。當一個chunk分裂之后,只能有一個成為熱點,另一個不能再被寫入,否則就會產生兩個熱點,不再寫入的chunk也就是死掉了,后續只會對它有讀操作。

我在實踐中除了書中講到的組合鍵方式外,還加上了預分片策略,避免了早期數據增長過程中的分片和數據遷移。另外還盡可能的制造能利用局部性原理的數據寫入,例如在數據寫入之前先對數據排序,有大約30%左右的update性能提升。

預分片是這樣子做的:根據組合shardkey信息先分裂好chunk,把這些空chunk移動到各個shard上,避免了后續自動分裂引起的數據遷移。

12、怎么建索引更能提高查詢性能?

在查詢時,索引是否高效,要注意它的cardinality(cardinality越高表示該鍵可選擇的值越多),在組合索引中,讓cardinality高的放在前面。注意這里跟分布式環境選擇shard key的不同。以下為讀書筆記:

index cardinality(索引散列程度),表示的是一個索引所對應到的值的多少,散列程度越低,則一個索引對應的值越多,索引效果越差:在使用索引時,高散列程度的索引可以更多的排除不符合條件的文檔,讓后續的比較在一個更小的集合中執行,這更高效。所以一般選擇高散列程度的鍵做索引,或者在組合索引中,把高散列程度的鍵放在前面。

13、非原地update,性能會很差

update文檔時,如果新文檔的空間占用大於舊文檔加上它周圍padding的空間,那么就會放棄原來的位置,把數據拷貝到新空間。

14、無法在索引建立之后再去增加索引的過期時間

如果索引建立指定了過期時間,后續要update過期時間可以這樣子:db.runCommand({"collMod":"a", index:{keyPattern:{"_":-1}, expireAfterSeconds: 60}})。

注意,通過collMod能修改過期時間的前提是:這個索引有過期時間,如果這個索引之前沒有設置過期時間,那么無法update,只能刪了索引,重建索引並指定過期時間。

15、_id索引無法刪除

16、paddingFactor是什么?

它是存儲空間冗余系數,1.0表示沒有冗余,1.5表示50%的冗余空間,有了冗余空間,可以讓后續引發size增加的操作更快(不會導致重新分配磁盤空間和文檔遷移),一般是在1到4之間。可以通過db.collection.stats()看到collection的該值“paddingFactor”。

該值是MongoDB自己處理的,使用者無法設置paddingFactor。我們可以在compact的時候對已經有的文檔指定該值,但這個paddingFactor值不影響后續新插入的文檔。

repairDatabase跟compact類似,也能移除冗余減少存儲空間,但冗余空間少了會導致后續增加文檔size的update操作變慢。

雖然我們無法設置paddingFactor,但是可以使用usePowerOf2Sizes保證分配的空間是2的倍數,這樣也可以起到作用(MongoDB2.6版本起默認啟用usePowerOf2Size)。

或者手動實現padding:在插入文檔的時候先用默認字符占用一塊空間,等到真實數據寫入時,再unset掉它。

17、usePowerOf2Size是什么

這是為更有效的復用磁盤空間而設置的參數:分配的磁盤空間是2的倍數,如果超過了4MB,則是距離計算值最近的且大於它的完整MB數。
可以通過db.collections.stats()看到該值“userFlags”。
MongoDB2.6之后默認開啟usePowerOf2Size參數
使用后的效果可以看這里的PPT:http://www.slideshare.net/mongodb/use-powerof2sizes-27300759

18、aggregate pipeline 指定運算完成輸出文檔跟MapReduce相比有不足

(基於MongoDB2.6版本)MapReduce可以指定輸出到特定的db.collection中,例如:out_put = bson.SON([("replace", "collection_name" ), ("db", "xx_db")])

aggregate pipeline只能指定collection名字,也就意味着數據只能寫入到本db,同時結果不能寫入到capped collection、shard collection中。

相比之下,aggregate pipeline限制是比較多的,如果我們需要把結果放到某個DB下,則需要再做一次遷移:
db.runCommand({renameCollection:"sourcedb.mycol",to:"targetdb.mycol"})

但是!!上面的這條命令要求在admin下執行,且只能遷移往同shard下的DB,且被遷移的collection不能是shard的。

附錯誤碼信息:

https://github.com/mongodb/mongo/blob/master/src/mongo/s/commands_public.cpp#L778
uassert(13140, "Don't recognize source or target DB", confFrom && confTo);
uassert(13138, "You can't rename a sharded collection", !confFrom->isSharded(fullnsFrom));
uassert(13139, "You can't rename to a sharded collection", !confTo->isSharded(fullnsTo));
uassert(13137, "Source and destination collections must be on same shard", shardFrom == shardTo);

19、殺掉MongoD進程的幾種方式

1)進入到MongoD的命令行模式執行shutdown,

$ mongo --port 10001
> use admin
> db.shutdownServer()

2)1方式的簡化:

eg:mongo admin --port 10001 --eval "db.shutdownServer()"

3)使用MongoD命令行關閉,需要指定db路徑:

mongod --dbpath ./data/db --shutdown

20、集群的shard key慎重采用hash

如果你的日志是有日期屬性的,那么shard key不要使用hash,否則刪除過期日志時無法成塊刪除;在更新日志的時候,也不能利用局部性原理,查找、更新、插入數據都會因此而變慢。一般來說,hash id應付小數據量時壓力不大,但在數據量較大(熱數據大於可用內存容量)時,CRUD性能極差,且會放大碎片對性能的影響:數據非常分散,當有過期日志被刪除后,這些刪除后的空間成為碎片,可能會因為磁盤預讀策略被加載到內存中。另外,采用hash shard key還會浪費掉一個索引,浪費不少空間。

21、副本數也不用太多

如果你的副本數量超過了12個(MongoDB3.0.0超過了50個),那么就要選擇使用 master-slave ,但這樣會失去故障自恢復功能,主節點故障時,需要手動去切換到無故障節點。

22、mongos的config server配置信息中不要使用localhost、127.0.0.1

啟動mongos時,config server的配置信息不得使用localhost、127.0.0.1,否則添加其它機器的shard時,會出現錯誤提示:
"can’t use localhost as a shard since all shards need to communicate. either use all shards and configdbs in localhost or all in actual IPs host: xxxxx isLocalHost"

以新的config server啟動mongos,也需要重啟config server,否則會有錯誤提示:
“could not verify config servers were active and reachable before write”

如果改完后面又出現 “mongos specified a different config database string” 錯誤,那么還需要重啟mongod,

修改了config server 幾乎是要全部實例重啟。另外,在配置replica set時也不得使用localhost、127.0.0.1。

23、shard key的選擇跟update性能緊密關聯

分布式MongoDB,shard key的選擇跟update性能,甚至是update可用性有很大關系,需要注意。

1、在對文檔個別字段update時,如果query部分沒有帶上shard key,性能會很差,因為mongos需要把這條update語句派發給所有的shard 實例。

2、當update 的upsert參數為true時,query部分必須帶上 shard key,否則語句執行出錯,例子:

mongos> db.test.update({"_id":".7269993106A92327A89ABCD70D46AD5"}, 
{"$set":{"P": "aaa"}, "$setOnInsert":{"TEST":"a"}}, true)
WriteResult({
"nMatched" : 0,
"nUpserted" : 0,
"nModified" : 0,
"writeError" : {
"code" : 61,
"errmsg" : "upsert { q: { _id: \".7269993106A92327A89ABCD70D46AD5\" }, u: { $set: { P: "aaa" }, $setOnInsert: { TEST: \"a\" } }, multi: false, upsert: true } does not contain shard key for pattern { _: 1.0, B: 1.0 }"
}
})

這是因為如果沒有shard key,mongos既不能在所有shard實例上執行這條語句(可能會導致每個shard都插入數據),也無法選擇在某個shard上執行這條語句,於是出錯了。

另外,需要特別注意,如果使用pymongo引擎,它不會告訴你出錯了,只是函數調用陷入不返回,在shell下執行才能看到錯誤信息。

附:

It's actually not clear to me that this is something we can support - problem is this:

> db.coll.update({ _id : 1 }, { }, true);
> db.coll.find()
{ "_id" : ObjectId("53176700a2bc4d46c176f14a") }

Upserts generate new _ids in response to this operation, and therefore we can't actually target this correctly in a sharded environment. The shard on which we need to perform the query may not be the shard on which the new _id is placed.

意思是說,upsert產生了新的_id,_id就是shard key,但是如果query里沒有shard key,它們不知道要到哪個shard上執行這個命令,upsert產生的shard key可能並不是執行這條命令的shard的。

另外,如果_id不是shard key我們的例子也是不能成功的,因為沒有shard key,這條upsert要在哪個shard上執行呢?不能像普通update那樣給所有的shard去做,否則可能導致插入多條。

24、通過repairDatabase提高性能

從db.stats()中可以看到幾個跟碎片相關的關鍵字段,dataSize,表示數據的大小,它包含了padding的空間;storageSize,表示這些數據存儲占用的空間,包含了dataSize和被刪除數據所占空間,可以認為storageSize/dataSize就是磁盤碎片比例,當刪除、update文檔比較多后,它會變大,考慮做repairDatabase,以減少碎片讓數據更緊湊,在實踐中,這對提高CURD性能極其有用。repairDatabase時需要注意:它是把數據拷貝到新的地方,然后再做處理,所以repair之前在DB目錄所在磁盤需要預留一倍的空閑磁盤空間,如果你發現磁盤空間不足,可以停止服務,然后增加一塊新磁盤,再執行實例級別的repair,並指定--repairpath為新磁盤路徑,eg:mongod --dbpath /path/to/corrupt/data --repair --repairpath /media/external-hd/data/db,實例的數據會拷貝到/media/external-hd/data/db上做處理。

25、索引字段的長度不能大於1024字節

索引字段的長度不能大於1024字節,否則shell下會有插入錯誤提示:"errmsg" : "insertDocument :: caused by :: 17280 Btree::insert: key too large to index”。

使用pymongo的“continue_on_error”參數,不會發出錯誤提示,要注意。

參考:http://docs.mongodb.org/manual/reference/limits/#Index-Key-Limit

26、修改索引的expireAfterSeconds之后,負載均衡失敗

修改索引的expireAfterSeconds之后,負載均衡失敗,出現錯誤提示

“2015-06-05T09:59:49.056+0800 [migrateThread] warning: failed to create index before migrating data. 
 idx: { v: 1, key: { _: -1 }, name: "__-1", ns: "cswuyg_test.cswuyg_test", 
expireAfterSeconds: 5227200 } error: IndexOptionsConflict Index with name: __-1 already exists with different options

檢查發生moveChunk的兩個shard,並沒有發現不一致,懷疑存在緩存,重啟所有shard解決。

27、config DB無法寫入

因config DB無法修改,只可讀,導致drop、enablesharding失敗:

config server 相關日志:2015-06-11T16:51:19.078+0800 [replmaster] local.oplog.$main Assertion failure isOk() src/mongo/db/storage/extent.h 80

mongos 相關日志: [LockPinger] warning: pinging failed for distributed lock pinger 'xxx:1234/xxx:1235:1433993544:1804289383'. : : caused by :: isOk()

重啟、configdb做repair均無法解決。

最后通過dump、restore解決:

(1)把舊configdb dump出來;

(2)restore到新的configure server;

(3)mongos采用新的configure server;

(4)重啟全部mongod。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM