1.線程屬性
線程具有屬性,用pthread_attr_t表示,在對該結構進行處理之前必須進行初始化,在使用后需要對其去除初始化。我們用pthread_attr_init函數對其初始化,用pthread_attr_destroy對其去除初始化。
1.
名稱:: |
pthread_attr_init/pthread_attr_destroy |
功能: |
對線程屬性初始化/去除初始化 |
頭文件: |
#include<pthread.h> |
函數原形: |
int pthread_attr_init(pthread_attr_t*attr); int pthread_attr_destroy(pthread_attr_t*attr); |
參數: |
Attr 線程屬性變量 |
返回值: |
若成功返回0,若失敗返回-1。 |
調用pthread_attr_init之后,pthread_t結構所包含的內容就是操作系統實現支持的線程所有屬性的默認值。
如果要去除對pthread_attr_t結構的初始化,可以調用pthread_attr_destroy函數。如果pthread_attr_init實現時為屬性對象分配了動態內存空間,pthread_attr_destroy還會用無效的值初始化屬性對象,因此如果經pthread_attr_destroy去除初始化之后的pthread_attr_t結構被pthread_create函數調用,將會導致其返回錯誤。
線程屬性結構如下:
typedef struct
{
int detachstate; 線程的分離狀態
int schedpolicy; 線程調度策略
structsched_param schedparam; 線程的調度參數
int inheritsched; 線程的繼承性
int scope; 線程的作用域
size_t guardsize; 線程棧末尾的警戒緩沖區大小
int stackaddr_set;
void* stackaddr; 線程棧的位置
size_t stacksize; 線程棧的大小
}pthread_attr_t;
每個個屬性都對應一些函數對其查看或修改。下面我們分別介紹。
二、線程的分離狀態
線程的分離狀態決定一個線程以什么樣的方式來終止自己。在默認情況下線程是非分離狀態的,這種情況下,原有的線程等待創建的線程結束。只有當pthread_join()函數返回時,創建的線程才算終止,才能釋放自己占用的系統資源。
而分離線程不是這樣子的,它沒有被其他的線程所等待,自己運行結束了,線程也就終止了,馬上釋放系統資源。程序員應該根據自己的需要,選擇適當的分離狀態。所以如果我們在創建線程時就知道不需要了解線程的終止狀態,則可以pthread_attr_t結構中的detachstate線程屬性,讓線程以分離狀態啟動。
2.
名稱:: |
pthread_attr_getdetachstate/pthread_attr_setdetachstate |
功能: |
獲取/修改線程的分離狀態屬性 |
頭文件: |
#include<pthread.h> |
函數原形: |
int pthread_attr_getdetachstate(const pthread_attr_t *attr,int *detachstate); int pthread_attr_setdetachstate(pthread_attr_t *attr,intdetachstate); |
參數: |
Attr 線程屬性變量 Detachstate 線程的分離狀態屬性 |
返回值: |
若成功返回0,若失敗返回-1。 |
可以使用pthread_attr_setdetachstate函數把線程屬性detachstate設置為下面的兩個合法值之一:設置為PTHREAD_CREATE_DETACHED,以分離狀態啟動線程;或者設置為PTHREAD_CREATE_JOINABLE,正常啟動線程。可以使用pthread_attr_getdetachstate函數獲取當前的datachstate線程屬性。
以分離狀態創建線程
#iinclude<pthread.h>
void *child_thread(void *arg) { printf(“child thread run!\n”); }
int main(int argc,char *argv[ ]) { pthread_ttid; pthread_attr_tattr;
pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED); pthread_create(&tid,&attr,fn,arg); pthread_attr_destroy(&attr); sleep(1); } |
三、線程的繼承性
函數pthread_attr_setinheritsched和pthread_attr_getinheritsched分別用來設置和得到線程的繼承性,這兩個函數的定義如下:
3.
名稱:: |
pthread_attr_getinheritsched pthread_attr_setinheritsched |
功能: |
獲得/設置線程的繼承性 |
頭文件: |
#include<pthread.h> |
函數原形: |
int pthread_attr_getinheritsched(const pthread_attr_t*attr,int *inheritsched); int pthread_attr_setinheritsched(pthread_attr_t *attr,intinheritsched); |
參數: |
attr 線程屬性變量 inheritsched 線程的繼承性 |
返回值: |
若成功返回0,若失敗返回-1。 |
這兩個函數具有兩個參數,第1個是指向屬性對象的指針,第2個是繼承性或指向繼承性的指針。繼承性決定調度的參數是從創建的進程中繼承還是使用在schedpolicy和schedparam屬性中顯式設置的調度信息。Pthreads不為inheritsched指定默認值,因此如果你關心線程的調度策略和參數,必須先設置該屬性。
繼承性的可能值是PTHREAD_INHERIT_SCHED(表示新現成將繼承創建線程的調度策略和參數)和PTHREAD_EXPLICIT_SCHED(表示使用在schedpolicy和schedparam屬性中顯式設置的調度策略和參數)。
如果你需要顯式的設置一個線程的調度策略或參數,那么你必須在設置之前將inheritsched屬性設置為PTHREAD_EXPLICIT_SCHED.
下面我來講進程的調度策略和調度參數。我會結合下面的函數給出本函數的程序例子。
四、線程的調度策略
函數pthread_attr_setschedpolicy和pthread_attr_getschedpolicy分別用來設置和得到線程的調度策略。
4.
名稱:: |
pthread_attr_getschedpolicy pthread_attr_setschedpolicy |
功能: |
獲得/設置線程的調度策略 |
頭文件: |
#include<pthread.h> |
函數原形: |
int pthread_attr_getschedpolicy(const pthread_attr_t*attr,int *policy); int pthread_attr_setschedpolicy(pthread_attr_t *attr,intpolicy); |
參數: |
attr 線程屬性變量 policy 調度策略 |
返回值: |
若成功返回0,若失敗返回-1。 |
這兩個函數具有兩個參數,第1個參數是指向屬性對象的指針,第2個參數是調度策略或指向調度策略的指針。調度策略可能的值是先進先出(SCHED_FIFO)、輪轉法(SCHED_RR),或其它(SCHED_OTHER)。
SCHED_FIFO策略允許一個線程運行直到有更高優先級的線程准備好,或者直到它自願阻塞自己。在SCHED_FIFO調度策略下,當有一個線程准備好時,除非有平等或更高優先級的線程已經在運行,否則它會很快開始執行。
SCHED_RR(輪循)策略是基本相同的,不同之處在於:如果有一個SCHED_RR
策略的線程執行了超過一個固定的時期(時間片間隔)沒有阻塞,而另外的SCHED_RR或SCHBD_FIPO策略的相同優先級的線程准備好時,運行的線程將被搶占以便准備好的線程可以執行。
當有SCHED_FIFO或SCHED_RR策賂的線程在一個條件變量上等持或等持加鎖同一個互斥量時,它們將以優先級順序被喚醒。即,如果一個低優先級的SCHED_FIFO線程和一個高優先織的SCHED_FIFO線程都在等待鎖相同的互斥且,則當互斥量被解鎖時,高優先級線程將總是被首先解除阻塞。
五、線程的調度參數
函數pthread_attr_getschedparam 和pthread_attr_setschedparam分別用來設置和得到線程的調度參數。
5.
名稱:: |
pthread_attr_getschedparam pthread_attr_setschedparam |
功能: |
獲得/設置線程的調度參數 |
頭文件: |
#include<pthread.h> |
函數原形: |
int pthread_attr_getschedparam(const pthread_attr_t*attr,struct sched_param *param); int pthread_attr_setschedparam(pthread_attr_t *attr,conststruct sched_param *param); |
參數: |
attr 線程屬性變量 param sched_param結構 |
返回值: |
若成功返回0,若失敗返回-1。 |
這兩個函數具有兩個參數,第1個參數是指向屬性對象的指針,第2個參數是sched_param結構或指向該結構的指針。結構sched_param在文件/usr/include/bits/sched.h中定義如下:
struct sched_param
{
intsched_priority;
};
結構sched_param的子成員sched_priority控制一個優先權值,大的優先權值對應高的優先權。系統支持的最大和最小優先權值可以用sched_get_priority_max函數和sched_get_priority_min函數分別得到。
注意:如果不是編寫實時程序,不建議修改線程的優先級。因為,調度策略是一件非常復雜的事情,如果不正確使用會導致程序錯誤,從而導致死鎖等問題。如:在多線程應用程序中為線程設置不同的優先級別,有可能因為共享資源而導致優先級倒置。
6.
http://linux.die.net/man/3/sched_get_priority_min
Synopsis
#include <sched.h>
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
Description
The sched_get_priority_max() and sched_get_priority_min() functions shall return the appropriate maximum or minimum, respectively, for the scheduling policy specified bypolicy.
The value of policy shall be one of the scheduling policy values defined in <sched.h>.
Return Value
If successful, the sched_get_priority_max() and sched_get_priority_min() functions shall return the appropriate maximum or minimum values, respectively. If unsuccessful, they shall return a value of -1 and set errno to indicate the error.
Errors
The sched_get_priority_max() and sched_get_priority_min() functions shall fail if:
- EINVAL
- The value of the policy parameter does not represent a defined scheduling policy.
下面是上面幾個函數的程序例子:
#include<pthread.h>
#include<sched.h>
void *child_thread(void *arg)
{
int policy = 0;
int max_priority = 0,min_priority = 0;
struct sched_param param;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setinheritsched(&attr,PTHREAD_EXPLICIT_SCHED);
pthread_attr_getinheritsched(&attr,&policy);
if(policy == PTHREAD_EXPLICIT_SCHED){
printf("Inheritsched:PTHREAD_EXPLICIT_SCHED\n");
}
if(policy == PTHREAD_INHERIT_SCHED){
printf("Inheritsched:PTHREAD_INHERIT_SCHED\n");
}
pthread_attr_setschedpolicy(&attr,SCHED_RR);
pthread_attr_getschedpolicy(&attr,&policy);
if(policy == SCHED_FIFO){
printf("Schedpolicy:SCHED_FIFO\n");
}
if(policy == SCHED_RR){
printf("Schedpolicy:SCHED_RR\n");
}
if(policy == SCHED_OTHER){
printf("Schedpolicy:SCHED_OTHER\n");
}
max_priority = sched_get_priority_max(policy);
min_priority = sched_get_priority_min(policy);
printf("Maxpriority:%u\n",max_priority);
printf("Minpriority:%u\n",min_priority);
param.sched_priority = max_priority;
pthread_attr_setschedparam(&attr,¶m);
printf("sched_priority:%u\n",param.sched_priority);
pthread_attr_destroy(&attr);
}
int main(int argc,char *argv[ ])
{
pthread_t child_thread_id;
pthread_create(&child_thread_id,NULL,child_thread,NULL);
pthread_join(child_thread_id,NULL);
}
==[23]==gaoke@dev64_23:~/code$./test
Inheritsched:PTHREAD_EXPLICIT_SCHED
Schedpolicy:SCHED_RR
Maxpriority:99
Minpriority:1
sched_priority:99