具體的定義及基本應用構造見2012年冬令營陳老師的ppt
這篇博文的題目對於剛剛接觸的同學有可能偏難,建議可以用后綴自動機做一下以前做過的后綴數組的題目。不過題目都是很好的!
[POJ 2774]Long Long Message
后綴自動機的模式匹配。
類似kmp一樣的往上跳
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#define maxn 100010
using namespace std;
char str[maxn];
struct Node{
int len, link, nxt[26];
}st[maxn << 1];
int root, size, last;
void init(){
root = size = last = 0;
st[root].len = 0;
st[root].link = -1;
}
void Extend(int c){
int p = last, cur = ++ size;
st[cur].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == 0; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else{
int q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
}
last = cur;
}
int main(){
init();
scanf("%s", str + 1);
int n = strlen(str + 1);
for(int i = 1; i <= n; i ++)
Extend(str[i] - 'a');
scanf("%s", str + 1);
n = strlen(str + 1);
int nw = root, cur = 0, ans = 0;
for(int i = 1; i <= n; i ++){
int c = str[i] - 'a';
if(st[nw].nxt[c])cur ++, nw = st[nw].nxt[c];
else{
while(~nw && st[nw].nxt[c] == 0)
nw = st[nw].link;
if(nw == -1)nw = root, cur = 0;
else cur = st[nw].len + 1, nw = st[nw].nxt[c];
}
ans = max(ans, cur);
}
printf("%d\n", ans);
return 0;
}
[BZOJ 3238][AHOI 2013]差異
給一個字符串,求∑ ∑ len[i] + len[j] - 2 * lcp(i, j)
差異這道題目給初學sam的窩很大啟發
求兩個子串的lcp的方法:
將原串逆序插入后綴自動機即得后綴樹。
將兩個點的LCA求出,LCA對應的len值即為LCP的長度。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 1000010
using namespace std;
int n;
typedef long long ll;
char s[maxn];
struct Node{int len, link, nxt[26];}st[maxn];
int root, size, last;
void init(){
root = size = last = 0;
st[root].link = -1;
}
void Extend(char ch){
int p = last, cur = ++ size, c = ch - 'a';
st[cur].len = st[last].len + 1;
for(; ~p && st[p].nxt[c] == 0; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else{
int q = st[p].nxt[c];
if(st[p].len + 1 == st[q].len)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
}
last = cur;
}
long long ans;
int mark[maxn];
struct Edge{
int to, next;
}edge[maxn];
int h[maxn], cnt;
void add(int u, int v){
cnt ++;
edge[cnt].to = v;
edge[cnt].next = h[u];
h[u] = cnt;
}
int dep[maxn];
ll dp[maxn], ret;
void dfs(int u){
dp[u] = mark[u];
ll sum = dp[u] * dp[u];
for(int i = h[u]; i; i = edge[i].next){
int v = edge[i].to;
dfs(v);
dp[u] += dp[v];
sum += dp[v] * dp[v];
}
ret += (dp[u] * dp[u] - sum) * st[u].len;
}
long long solve(){
int now = root;
for(int i = n; i >= 1; i --){
now = st[now].nxt[s[i] - 'a'];
mark[now] ++;
}
for(int i = 1; i <= size; i ++)
add(st[i].link, i);
ret = 0;
dfs(root);
return ret;
}
ll p[maxn];
int main(){
scanf("%s", s + 1);
n = strlen(s + 1);
init();
for(int i = n; i >= 1; i --)
Extend(s[i]);
for(int i = 1; i <= n; i ++)
p[i] = p[i - 1] + i;
for(int i = n; i >= 1; i --)
ans += 1ll * i * (i - 1) + p[i - 1];
printf("%lld\n", ans - solve());
return 0;
}
[BZOJ 3676][APIO 2014]回文串
考慮一個只包含小寫拉丁字母的字符串s。我們定義s的一個子串t的“出現值”為t在s中的出現次數乘以t的長度。請你求出s的所有回文子串中的最大出現值。
后綴自動機上的倍增(一種常用的技巧),當然了,可以用pam
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 600010
using namespace std;
char s[maxn];
int n;
long long ans;
struct Node{int len, link, nxt[26], size;}st[maxn];
int root, size, last;
void init(){
root = size = last = 0;
st[root].len = 0;
st[root].link = -1;
}
int anc[maxn][20], pos[maxn];
void Extend(char ch, int part){
int p, cur = ++ size, c = ch - 'a';
st[cur].len = st[last].len + 1;
st[cur].size = 1;
pos[part] = cur;
for(p = last; ~p && !st[p].nxt[c]; p = st[p].link)
st[p].nxt[c] = cur;
pos[part] = cur;
st[cur].size = 1;
if(p == -1)
st[cur].link = root;
else{
int q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
st[clone].size = 0;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
}
last = cur;
}
int t[maxn], w[maxn];
void build(){
memset(anc, -1, sizeof anc);
for(int i = 1; i <= size; i ++)
anc[i][0] = st[i].link;
for(int j = 1; 1 << j <= size; j ++)
for(int i = 1; i <= size; i ++){
int a = anc[i][j - 1];
if(~a)anc[i][j] = anc[a][j - 1];
}
for(int i = 1; i <= size; i ++)
w[st[i].len] ++;
for(int i = 1; i <= size; i ++)
w[i] += w[i - 1];
//for(int i = 1; i <= size; i ++)
for(int i = size; i >= 1; i --)
t[w[st[i].len] --] = i;
for(int i = size; i; i --)
st[st[t[i]].link].size += st[t[i]].size;
}
void update(int l, int r){
int t = pos[r];
for(int i = 18; i >= 0; i --){
if(~anc[t][i]){
int to = anc[t][i];
if(st[to].len >= r - l + 1)
t = to;
}
}
ans = max(ans, 1ll * st[t].size * (r - l + 1));
}
int r[maxn];
void solve(){
s[0] = '*';
s[n + 1] = '#';
init();
for(int i = 1; i <= n; i ++)
Extend(s[i], i);
build();
int mx = 0, p = 0;
for(int i = 1; i <= n; i ++){
if(i < mx)r[i] = min(r[2 * p - i - 1], mx - i);
else r[i] = 0;
while(s[i + r[i] + 1] == s[i - r[i]]){
r[i] ++;
update(i - r[i] + 1, i + r[i]);
}
if(r[i] + i > mx)mx = r[i] + i, p = i;
}
mx = 0, p = 0;
for(int i = 1; i <= n; i ++){
if(i < mx){r[i] = min(r[2 * p - i], mx - i - 1);}
else {r[i] = 1;update(i, i);}
while(s[i + r[i]] == s[i - r[i]]){
r[i] ++;
update(i - r[i] + 1, i + r[i] - 1);
}
if(r[i] + i > mx)mx = r[i] + i, p = i;
}
printf("%lld\n", ans);
}
int main(){
scanf("%s", s + 1);
n = strlen(s + 1);
solve();
return 0;
}
其實還有一道題目相關--HEOI2015最短不公共子串
[BZOJ 3998]弦論
對於一個給定長度為N的字符串,求它的第K小子串是什么。
第一行是一個僅由小寫英文字母構成的字符串S
后綴自動機(大概是子串計數一道很好的題目)
SAM上每一個節點代表一條路徑從根出發到這里的字符串。
所以每一個節點++就代表一個不同的子串
right集合:parent樹上所對應的葉子節點的個數。
然后我們要把right集合累加起來當做位置不同的子串算多個的個數。
然后DFS。(26分?霧。。)
后綴自動機的狀態right集合大小是其在parent樹中子樹的葉子節點數量,代表這個狀態所代表的字串出現次數。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 1000010
using namespace std;
char c[maxn];
struct Node{
int len, link, nxt[26];
}st[maxn];
int root, last, size;
void init(){
root = last = size = 1;
st[root].len = 0;
st[root].link = -1;
}
int t[maxn], w[maxn], sum[maxn], val[maxn];
void Extend(char ch){
int p, cur = ++ size, c = ch - 'a';
st[cur].len = st[last].len + 1;
val[cur] = 1;
for(p = last; ~p && !st[p].nxt[c]; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else{
int q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
}last = cur;
}
int x, k;
void prepare(){
for(int i = 1; i <= size; i ++)w[st[i].len] ++;
for(int i = 1; i <= size; i ++)w[i] += w[i - 1];
for(int i = size; i >= 1; i --)t[w[st[i].len] --] = i;
for(int i = size; i >= 1; i --){
int now = t[i];
if(x == 1)val[st[now].link] += val[now];
else val[now] = 1;
}
val[1] = 0;
for(int i = size; i; i --){
int now = t[i];sum[now] = val[now];
for(int j = 0; j < 26; j ++)
sum[now] += sum[st[now].nxt[j]];
}
}
void dfs(int x, int k){
if(k <= val[x])return;
k -= val[x];int v;
for(int i = 0; i < 26; i ++){
if(v = st[x].nxt[i]){
if(k <= sum[v]){
putchar(i + 'a');
dfs(v, k);
return;
}
k -= sum[v];
}
}
}
int main(){
init();
scanf("%s", c + 1);
int n = strlen(c + 1);
for(int i = 1; i <= n; i ++)
Extend(c[i]);
scanf("%d%d", &x, &k);
prepare();
if(sum[1] < k)printf("-1");
else dfs(1, k);
return 0;
}
[NOI 2015]品酒大會
給定一個字符串,求出這個字符串中所有長度為i(0<=i<n)兩兩相等的子串個數和給定value[p]*value[q]的最大值(p,q為左端點)
考慮后綴自動機。
如果將所有節點(包括clone節點)的路徑數都賦為1。做路徑計數的話應該是所有本質不同的子串的計數。
如果只將原字符串遍歷到的節點(不包括clone節點)的值賦為1,做路徑計數的話應該是所有節點的right集合。
根據[TJOI 弦論]如果把right集合累加起來,就可以得知子串相同但是位置不同算多個的子串的個數
right集合代表的是什么?
是指parent樹上這個點子樹的葉節點的個數。是這個狀態的子串在原串中出現的次數
這道題目:選擇兩個子串,它們的LCP等於parent樹上的LCA的len值。
我們要統計的是right集合(代表這個狀態的字符串出現的次數)。也就是這棵子樹中的葉節點的數目。
關於Right集合:
定義:一個子串str在母串S中所有出現位置的右端點。如子串str在S中出現位置為[l1,r1),[l2,r2),...,[ln,r3),則 str的Right集合為{r1..rn}。會有一些子串的Right集合相同,其中最長的len為MAX(s),最短的為MIN(s)
#include <bits/stdc++.h>
#define maxn 600010
using namespace std;
int n;
char str[maxn];
typedef long long ll;
ll ans[maxn], mx[maxn][2], mn[maxn][2], s[maxn], siz[maxn], t;
int val[maxn];
struct Node{
int nxt[26], len, link;
}st[maxn];
int last, size, root;
void init(){
root = last = size = 0;
st[root].link = -1;
st[root].len = 0;
}
void Extend(char ch, int Id){
int cur = ++ size, p = last, c = ch - 'a';
st[cur].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == 0; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else{
int q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
}
last = cur;
mx[cur][0] = mn[cur][0] = val[Id];
siz[cur] = 1;
}
struct Edge{
int to, next;
}edge[maxn << 1];
int h[maxn], cnt;
void add(int u, int v){
cnt ++;
edge[cnt].to = v;
edge[cnt].next = h[u];
h[u] = cnt;
}
inline void upd(ll& a, ll b){
if(b > a)
a = b;
}
const ll inf = 1e9+1;
void DFS(int u){
int len = st[u].len;
for(int i = h[u]; i; i = edge[i].next){
int v = edge[i].to;
DFS(v);
s[len] += siz[u] * siz[v];
siz[u] += siz[v];
if(mx[v][0] >= mx[u][0]){
mx[u][1] = mx[u][0];
mx[u][0] = mx[v][0];
}
else mx[u][1] = max(mx[u][1], mx[v][0]);
if(mn[v][0] <= mn[u][0]){
mn[u][1] = mn[u][0];
mn[u][0] = mn[v][0];
}
else mn[u][1] = min(mn[u][1], mn[v][0]);
mx[u][1] = max(mx[u][1], mx[v][1]);
mn[u][1] = min(mn[u][1], mn[v][1]);
}
if(mx[u][1] > -inf && mx[u][1] > -inf)upd(ans[len], mx[u][0] * mx[u][1]);
if(mn[u][1] < inf && mn[u][0] < inf)upd(ans[len], mn[u][0] * mn[u][1]);
}
int main(){
init();
scanf("%d", &n);
scanf("%s", str+1);
for(int i = 1; i <= n; i ++)
scanf("%d", &val[i]);
for(int i = 0; i <= 2 * n; i ++){
ans[i] = -1ll << 61;
mx[i][0] = mx[i][1] = -0x7fffffff;
mn[i][0] = mn[i][1] = 0x7fffffff;
}
for(int i = n; i >= 1; i --)
//for(int i = 1; i <= n; i ++)
Extend(str[i], i);
for(int i = 1; i <= size; i ++)
add(st[i].link, i);
DFS(root);
for(int i = n-2; i >= 0; i --)
ans[i] = max(ans[i+1], ans[i]), s[i] += s[i+1];
for(int i = 0; i < n; i ++){
if(s[i] == 0)puts("0 0");
else printf("%lld %lld\n", s[i], ans[i]);
}
return 0;
}
[BZOJ 4310]跳蚤
題目請點上面的鏈接
詳細題解在這里
如何求第k大的子串?
26分?逐位確定
如果k大於這個兒子的個數就減掉
否則k-=當前的字符串值(如果是本質不同的字符串減1,否則減掉當前狀態代表的值)然后轉移now即可
當k=0時停止。
#include <bits/stdc++.h>
#define maxn 200010
using namespace std;
int n, k;
struct Node{int len, link, nxt[26];}st[maxn];
long long s[maxn];
char str[maxn];
int root, size, last;
void init(){
root = last = size = 0;
st[root].link = -1;
st[root].len = 0;
}
void Extend(char ch){
int cur = ++ size, p = last, c = ch - 'a';
st[cur].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == 0; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else{
int q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
}
last = cur;
}
bool vis[maxn];
long long DFS(int u){
if(vis[u])return s[u];
s[u] = vis[u] = 1;
for(int i = 0; i < 26; i ++)
if(st[u].nxt[i])
s[u] += DFS(st[u].nxt[i]);
return s[u];
}
int m;
char ans[maxn];
void Getstring(long long k){
int now = root, t; m = 0;
while(true){
for(int i = 0; i < 26; i ++){
if((t = st[now].nxt[i]) == 0)continue;
if(k > s[t])
k -= s[t];
else{
now = t, k --;
ans[++ m] = i + 'a';
if(k == 0)return;
break;
}
}
}
}
unsigned long long bases[maxn], hash1[maxn], hash2[maxn];
#define base 13131
bool pd(int i, int len){
if(len == 0)return true;
return hash1[1] - hash1[1+len] * bases[len] == hash2[i] - hash2[i+len] * bases[len];
}
bool cmp(int i, int j){
if(str[i] < ans[1])return true;
if(str[i] > ans[1])return false;
int l = 1, r = min(m, j-i+1);
while(l < r){
int mid = l + (r - l + 1) / 2;
if(pd(i, mid-1)){
if(str[i+mid-1] < ans[mid])return true;
if(str[i+mid-1] > ans[mid])return false;
l = mid;
}
else r = mid - 1;
}
if(str[i+r-1] < ans[r])return true;
if(str[i+r-1] > ans[r])return false;
if(j-i+1 > m)return false;
return true;
}
bool check(long long where){
Getstring(where);
hash1[m+1] = 0;
for(int i = m; i >= 1; i --)
hash1[i] = hash1[i+1] * base + ans[i];
int pos = n, cnt = 0;
for(int i = n; i; i = pos){
while(pos && cmp(pos, i))
pos --;
cnt ++;
if(cnt > k || pos == i)return false;
}return true;
}
int main(){
scanf("%d%s", &k, str+1);
init(); n = strlen(str+1);
for(int i = 1; i <= n; i ++)
Extend(str[i]);
DFS(root);
bases[0] = 1;
for(int i = n; i >= 1; i --)
hash2[i] = hash2[i+1] * base + str[i];
for(int i = 1; i <= n; i ++)
bases[i] = bases[i-1] * base;
long long l = 1, r = s[root];
while(l < r){
long long mid = l + r >> 1;
if(check(mid)) r = mid;
else l = mid + 1;
}
Getstring(r);
for(int i = 1; i <= m; i ++)
putchar(ans[i]);
return 0;
}
[HAOI 2016]找相同字符
我寫了一個非常鬼(ma)畜(fan)的做法。。
建立一個a串的后綴自動機,把b串放上去跑,在跑到的節點上累加答案
注意到后綴自動機一個節點包括的狀態有很多(根本沒注意)
狀態有(len - fa_len)這么多種
而且b串跑的長度並不是當前狀態的len
額外記錄一下
其實建個廣義后綴自動機直接統計就好了啊喂
#define MAXN 500000
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n1, n2;
char a[MAXN], b[MAXN];
int root, last, size;
struct Node { int len, link, nxt[26]; } st[MAXN];
void init() {
root = last = size = 0;
st[root].link = -1;
st[root].len = 0;
}
void Extend(int c) {
int cur = ++ size, p = last;
st[cur].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == 0; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else {
int q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else {
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
} last = cur;
}
int t[MAXN], w[MAXN];
ll s[MAXN], sz[MAXN];
int main() {
freopen("find_2016.in", "r", stdin);
freopen("find_2016.out", "w", stdout);
scanf("%s%s", a+1, b+1);
n1 = strlen(a+1), n2 = strlen(b+1);
init();
for(int i = 1; i <= n1; ++ i)
Extend(a[i]-'a');
int cur = root, step = 0;
for(int i = 1; i <= n1; ++ i) cur = st[cur].nxt[a[i]-'a'], s[cur] ++;
for(int i = 1; i <= size; ++ i) w[st[i].len] ++;
for(int i = 1; i <= size; ++ i) w[i] += w[i-1];
for(int i = 1; i <= size; ++ i) t[w[st[i].len] --] = i;
for(int i = size; i >= 1; -- i) s[st[t[i]].link] += s[t[i]];
for(int i = 1; i <= size; ++ i) sz[i] = s[i];
for(int i = 1; i <= size; ++ i) s[i] = s[i] * (st[i].len-st[st[i].link].len);
s[cur = root] = 0;
for(int i = 1; i <= size; ++ i) s[t[i]] += s[st[t[i]].link];
long long ans = 0;
for(int i = 1; i <= n2; ++ i) {
int c = b[i]-'a';
if(st[cur].nxt[c]) cur = st[cur].nxt[c], step ++;
else {
while(~cur && !st[cur].nxt[c]) cur = st[cur].link;
if(~cur) step = st[cur].len + 1, cur = st[cur].nxt[c];
else cur = root, step = 0;
}
ans += s[st[cur].link] + sz[cur]*(step - st[st[cur].link].len);
} printf("%lld\n", ans);
return 0;
}
[BZOJ 3277] 串
現在給定你n個字符串,詢問每個字符串有多少子串(不包括空串)是所有n個字符串中至少k個字符串的子串(注意包括本身)。
Sol:
建立廣義后綴自動機,然后給每個串打上標記(不卡時我就暴力改了一下)
掃一遍每一個串,統計當前字符結尾的子串>=k的個數,記憶搜即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 200010
using namespace std;
int n, k;
char s[maxn];
int in[maxn], out[maxn];
struct Node{
int len, link, nxt[27];
}st[maxn << 1];
int root, size, last;
void init(){
last = root = size = 0;
st[root].link = -1;
st[root].len = 0;
}
void Extend(int c){
int p = last, q = st[p].nxt[c];
if(q){
if(st[q].len == st[p].len + 1)
last = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = clone;
last = clone;
}
return;
}
int cur = ++ size;
st[cur].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == 0; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else{
int q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[cur].link = st[q].link = clone;
}
}
last = cur;
}
int vis[maxn];
int total_vis[maxn];
void update(int rt, int y){
while(~rt){
if(vis[rt] == y)break;
total_vis[rt] ++;
vis[rt] = y;
rt = st[rt].link;
}
}
long long val[maxn];
long long dfs(int rt){
if(vis[rt])return val[rt];
vis[rt] = true;
long long ret = 0;
if(~st[rt].link)ret = dfs(st[rt].link);
if(total_vis[rt] >= k)
ret += (long long)st[rt].len - (st[rt].link == -1 ? 0 : st[st[rt].link].len);
return val[rt] = ret;
}
int main(){
init();
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; i ++){
in[i] = out[i-1] + 1;
scanf("%s", s+in[i]);
out[i] = strlen(s+in[i]) + in[i] - 1;
last = root;
for(int j = in[i]; j <= out[i]; j ++)
Extend(s[j] - 'a');
}
for(int i = 1; i <= n; i ++){
int now = root;
for(int j = in[i]; j <= out[i]; j ++)
now = st[now].nxt[s[j] - 'a'], update(now, i);
}
memset(vis, 0, sizeof vis);
for(int i = 1; i <= n; i ++){
long long ans = 0;
int now = root;
for(int j = in[i]; j <= out[i]; j ++){
now = st[now].nxt[s[j] - 'a'];
ans += dfs(now);
}
printf("%I64d ", ans);
}
return 0;
}
[BZOJ 2806]Cheat
小強和阿米巴是好盆友~~
我們可以預處理出l[i]表示以i結尾的后綴在所有字符串中的最長匹配長度
如何得到呢?廣義后綴自動機。
剩下用單調隊列優化dp就可以了。
#include <bits/stdc++.h>
using namespace std;
#define maxn 1100010
int n, m;
char str[maxn];
int last, root, size;
struct Node{int link, len, nxt[2];}st[maxn << 1];
void init(){
last = root = size = 0;
st[root].len = 0;
st[root].link = -1;
}
void Extend(int c){
int p = last, q;
if(q = st[p].nxt[c]){
if(st[q].len == st[p].len + 1)
last = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = clone;
last = clone;
}return;
}
int cur = ++ size;
st[cur].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == 0; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else{
q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
}
last = cur;
}
//dp[i] = max(dp[j] + match(i, j), dp[i-1])
//max(dp[j] - j) + i j∈[i - st[nw].len, i - L]
int dp[maxn], que[maxn], val[maxn], head, tail;
int len, l[maxn];
void match(){
len = strlen(str + 1);
int nw = root, cur = 0;
for(int i = 1; i <= len; i ++){
int c = str[i] == '1';
if(st[nw].nxt[c])cur ++, nw = st[nw].nxt[c];
else{
while(~nw && !st[nw].nxt[c])
nw = st[nw].link;
if(nw == -1) nw = root, cur = 0;
else cur = st[nw].len + 1, nw = st[nw].nxt[c];
}
l[i] = cur;
}
}
bool check(int L){
dp[0] = 0;
head = tail = 0;
for(int i = 1; i <= len; i ++){
dp[i] = dp[i - 1];
int p = i - L;
if(p >= 0){
int v = dp[p] - p;
while(head < tail && v > val[tail - 1])
tail --;
que[tail] = p;
val[tail] = v;
tail ++;
}
while(head < tail && que[head] + l[i] < i)
head ++;
if(head < tail)dp[i] = max(dp[i], val[head] + i);
}
return 10 * dp[len] >= 9 * len;
}
void Getans(){
int l = 0, r = len;
while(l < r){
int mid = l + (r - l + 1) / 2;
if(check(mid)) l = mid;
else r = mid - 1;
}
printf("%d\n", l);
}
int main(){
init();
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; i ++){
scanf("%s", str + 1);
len = strlen(str + 1), last = root;
for(int j = 1; j <= len; j ++)
Extend(str[j] == '1');
}
for(int i = 1; i <= n; i ++){
scanf("%s", str + 1);
match();
Getans();
}
return 0;
}
[BZOJ 1396] 識別子串
用后綴自動機搞出出現了一次的子串(其實就是求每個節點的Right)
記錄每個節點的r(及他在原串中出現的pos位置,由於所求是Right=1的位置,所以pos唯一)
每一個節點的長度區間為[fa[len] + 1, len],即長度最小以及最大的[min, max]
發現有兩種更新方式,在長度為[len - fa[len] + 1,len]這段區間要用len-fa[len]+1, len-fa[len]+2,.......,len來更新,在長度為[0, len - fa[len]]這一段區間要用fa[len] + 1來更新
線段樹維護一下就可以了
#include <bits/stdc++.h>
#define maxn 100010
using namespace std;
struct Node{int len, link, nxt[26], r;}st[maxn << 1];
int root, last, size;
void init(){
root = last = size = 0;
st[root].link = -1;
st[root].len = 0;
}
void Extend(int c, int pos){
int p = last, cur = ++ size;
st[cur].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == 0; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else{
int q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
}
st[cur].r = pos;
last = cur;
}
typedef long long ll;
ll dp[maxn << 1];
int d[maxn << 1], w[maxn << 1];
char str[maxn];
int n;
int t[maxn << 2], lazy[maxn << 2];
#define lc id << 1
#define rc id << 1 | 1
void pushdown(int id, int l, int r){
if(lazy[id] <= n){
int mid = l + r >> 1;
lazy[lc] = min(lazy[lc], lazy[id]);
lazy[rc] = min(lazy[rc], lazy[id] - (mid - l + 1));
lazy[id] = n << 1;
}
}
void build(int id, int l, int r){
t[id] = n;
if(l == r){lazy[id] = n;return;}
lazy[id] = n << 1;
int mid = l + r >> 1;
build(lc, l, mid);
build(rc, mid + 1, r);
}
void update(int id, int l, int r, int x, int y, int val){
if(l == x && r == y){
lazy[id] = min(lazy[id], val);
return;
}
pushdown(id, l, r);
int mid = l + r >> 1;
if(y <= mid)update(lc, l, mid, x, y, val);
else if(x > mid)update(rc, mid + 1, r, x, y, val);
else update(lc, l, mid, x, mid, val), update(rc, mid + 1, r, mid + 1, y, val - (mid - x + 1));
}
void update2(int id, int l, int r, int x, int y, int val){
if(l == x && r == y){
t[id] = min(t[id], val);
return;
}
int mid = l + r >> 1;
if(y <= mid)update2(lc, l, mid, x, y, val);
else if(x > mid)update2(rc, mid + 1, r, x, y, val);
else update2(lc, l, mid, x, mid, val), update2(rc, mid + 1, r, mid + 1, y, val);
}
void ask(int id, int l, int r){
if(l == r){
printf("%d\n", min(lazy[id], t[id]));
return;
}
pushdown(id, l, r);
t[lc] = min(t[lc], t[id]);
t[rc] = min(t[rc], t[id]);
int mid = l + r >> 1;
ask(lc, l, mid);
ask(rc, mid + 1, r);
}
int main(){
init();
scanf("%s", str + 1);
n = strlen(str + 1);
for(int i = 1; i <= n; i ++)
Extend(str[i] - 'a', i);
int cur = root;
for(int i = 1; i <= n; i ++){
cur = st[cur].nxt[str[i] - 'a'];
dp[cur] = 1;
}
for(int i = 1; i <= size; i ++)w[st[i].len] ++;
for(int i = 1; i <= size; i ++)w[i] += w[i - 1];
for(int i = size; i >= 1; i --)d[w[st[i].len] --] = i;
for(int i = size; i >= 1; i --)dp[st[d[i]].link] += dp[d[i]];
build(1, 1, n);
for(int i = 1; i <= size; i ++){
if(dp[i] == 1){
int l = st[i].r - st[i].len + 1, r = st[i].r - st[st[i].link].len;
update(1, 1, n, l, r, st[i].len);
if(r + 1 <= st[i].r)update2(1, 1, n, r + 1, st[i].r, st[st[i].link].len + 1);
}
}
ask(1, 1, n);
return 0;
}
最后對於多串,我們還有廣義后綴自動機~
具體可以見這篇博文的E題
題目還有[BZOJ 3926][ZJOI 2015]諸神眷顧的幻想鄉
[BZOJ 2780][SPOJ 8093] Sevenk Love Oimaster
abcabcabc --------字符串集合
aaa
aafe
abc --------詢問字符串
a
ca
1 3 1
#include <bits/stdc++.h>
#define maxn 500000
using namespace std;
int n, m;
char s[maxn];
struct Edge_{int to, next;};
int In[maxn], Out[maxn], dfs_clock, dfn[maxn], ans[maxn];
vector<int>nxt[maxn];
int vis[maxn];
namespace BIT{
int t[maxn];
#define lowbit(i) i&(~i+1)
void update(int pos, int val){
if(!pos)return;
for(int i = pos; i <= dfs_clock; i += lowbit(i))
t[i] += val;
}
int ask(int pos){
if(!pos)return 0;
int ret = 0;
for(int i = pos; i; i -= lowbit(i))
ret += t[i];
return ret;
}
}
struct Edge{
Edge_ edge[maxn];
int h[maxn], cnt;
void add(int u, int v){
cnt ++;
edge[cnt].to = v;
edge[cnt].next = h[u];
h[u] = cnt;
}
void dfs(int u){
In[u] = ++ dfs_clock;
dfn[dfs_clock] = u;
for(int i = h[u]; i; i = edge[i].next)
dfs(edge[i].to);
Out[u] = dfs_clock;
}
void solve(){
for(int i = dfs_clock; i; i --){
int now = dfn[i];
for(int j = h[now]; j; j = edge[j].next){
int v = edge[j].to;
if(vis[v])nxt[i].push_back(vis[v]);
vis[v] = i;
}
}
for(int i = 1; i <= n; i ++)
BIT::update(vis[i], 1);
}
}A, B;
struct Node{
int len, link;
map<int, int>nxt;
}st[maxn];
int root, size, last;
void init(){
root = size = last = 0;
st[root].len = 0;
st[root].link = -1;
}
void Extend(char ch, int Id){
int c = ch - 'a', p = last, q = st[p].nxt[c];
if(q){
if(st[q].len == st[p].len + 1)
last = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = clone;
last = clone;
}
}
else{
int cur = ++ size;
st[cur].len = st[p].len + 1;
for(; ~p && !st[p].nxt[c]; p = st[p].link)
st[p].nxt[c] = cur;
if(p == -1)
st[cur].link = root;
else{
q = st[p].nxt[c];
if(st[q].len == st[p].len + 1)
st[cur].link = q;
else{
int clone = ++ size;
st[clone] = st[q];
st[clone].len = st[p].len + 1;
for(; ~p && st[p].nxt[c] == q; p = st[p].link)
st[p].nxt[c] = clone;
st[q].link = st[cur].link = clone;
}
}
last = cur;
}
A.add(last, Id);
}
struct opt{
int l, r, id;
bool operator<(const opt& k)const{
if(l != k.l)return l < k.l;
return r < k.r;
}
}q[maxn];
int main(){
init();
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++){
scanf("%s", s+1);
int N = strlen(s+1);
last = root;
for(int j = 1; j <= N; j ++)
Extend(s[j], i);
}
for(int i = 1; i <= size; i ++)
B.add(st[i].link, i);
B.dfs(root);
A.solve();
int tot = 0;
for(int i = 1; i <= m; i ++){
scanf("%s", s+1);
int N = strlen(s+1), now = root;
bool flag = true;
for(int j = 1; j <= N; j ++){
int p = s[j] - 'a';
if(!st[now].nxt[p]){
flag = false;
break;
}
now = st[now].nxt[p];
}
if(flag){
++ tot;
q[tot].l = In[now];
q[tot].r = Out[now];
q[tot].id = i;
}
}
sort(q+1, q+1+tot);
int l = 1;
for(int i = 1; i <= tot; i ++){
while(l < q[i].l && l < dfs_clock){
for(int j = 0; j < nxt[l].size(); j ++)
BIT::update(nxt[l][j], 1);
l ++;
}
ans[q[i].id] = BIT::ask(q[i].r) - BIT::ask(q[i].l-1);
}
for(int i = 1; i <= m; i ++)
printf("%d\n", ans[i]);
return 0;
}
Sam終極boss:[BZOJ 3145][Feyat cup 1.5]Str
具體解題報告在這個博客中有
