序列化在分布式環境的兩大作用:進程間通信,永久存儲。
Writable接口, 是根據 DataInput 和 DataOutput 實現的簡單、有效的序列化對象.
MR的任意Value必須實現Writable接口:
MR的key必須實現WritableComparable接口,
WritableComparable繼承自Writable和Comparable接口
:
(本節先講自定義value值,下一節再講自定義key值,根據key值進行自定義排序)
以一個例子說明,自定義數據類型(例子來源於學習的課程):
原始數據是由若干條下面數據組成:
數據格式及字段順序如下:
現在要做的工作是以“手機號碼”為關鍵字,計算同一個號碼的
upPackNum, downPackNum,upPayLoad,downPayLoad四個累加值
。
運用MapReduce解決問題思路:
1、框架將數據分成<k1,v1>,k1是位置標記,v1表示一行數據;
2、map函數輸入
<k1,v1>,輸入
<k2,v2>,k2是選定數據的第1列(從0開始),v2是自定義的數據類型,包含第六、七、八、九列封裝后的數據;
3、框架將<k2,v2>依據k2關鍵字進行map排序,然后進行combine過程,再進行Reduce段排序,得到<k2,list(v2...)>;
4、reduce函數處理
<k2,list(v2...)>,以k2為關鍵字,計算list的內容。
要自定義的數據類型是Value值,因此要繼承
Writable接口,
自定義數據類型如下
:
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
public class TrafficWritable implements Writable {
long upPackNum, downPackNum,upPayLoad,downPayLoad;
public TrafficWritable() { //這個構造函數不能省,否則報錯
super();
// TODO Auto-generated constructor stub
}
public TrafficWritable(String upPackNum, String downPackNum, String upPayLoad,
String downPayLoad) {
super();
this.upPackNum = Long.parseLong(upPackNum);
this.downPackNum = Long.parseLong(downPackNum);
this.upPayLoad = Long.parseLong(upPayLoad);
this.downPayLoad = Long.parseLong(downPayLoad);
}
@Override
public void write(DataOutput out) throws IOException { //序列化
// TODO Auto-generated method stub
out.writeLong(upPackNum);
out.writeLong(downPackNum);
out.writeLong(upPayLoad);
out.writeLong(downPayLoad);
}
@Override
public void readFields(DataInput in) throws IOException { //反序列化
// TODO Auto-generated method stub
this.upPackNum=in.readLong();
this.downPackNum=in.readLong();
this.upPayLoad=in.readLong();
this.downPayLoad=in.readLong();
}
@Override
public String toString() { //不加toStirng函數,最后輸出內存的地址
return upPackNum + "\t"+ downPackNum + "\t" + upPayLoad + "\t"
+ downPayLoad;
}
}
最后實現map函數和Reduce函數如下,基本框架和wordCount相同:
import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class TrafficCount {
/**
* @author nwpulisz
* @date 2016.3.31
*/
static final String INPUT_PATH="hdfs://192.168.255.132:9000/input";
static final String OUTPUT_PATH="hdfs://192.168.255.132:9000/output";
public static void main(String[] args) throws Throwable {
// TODO Auto-generated method stub
Configuration conf = new Configuration();
Path outPut_path= new Path(OUTPUT_PATH);
Job job = new Job(conf, "TrafficCount");
//如果輸出路徑是存在的,則提前刪除輸出路徑
FileSystem fileSystem = FileSystem.get(new URI(OUTPUT_PATH), conf);
if(fileSystem.exists(outPut_path))
{
fileSystem.delete(outPut_path,true);
}
FileInputFormat.setInputPaths(job, INPUT_PATH);
FileOutputFormat.setOutputPath(job, outPut_path);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(TrafficWritable.class);
job.waitForCompletion(true);
}
static class MyMapper extends Mapper<LongWritable, Text, Text, TrafficWritable>{
protected void map(LongWritable k1, Text v1,
Context context) throws IOException, InterruptedException {
String[] splits = v1.toString().split("\t");
Text k2 = new Text(splits[1]);
TrafficWritable v2 = new TrafficWritable(splits[6], splits[7],
splits[8], splits[9]);
context.write(k2, v2);
}
}
static class MyReducer extends Reducer<Text, TrafficWritable, Text, TrafficWritable>{
protected void reduce(Text k2, Iterable<TrafficWritable> v2s, Context context
) throws IOException, InterruptedException {
long upPackNum=0L, downPackNum=0L,upPayLoad=0L,downPayLoad=0L;
for(TrafficWritable traffic: v2s) {
upPackNum += traffic.upPackNum;
downPackNum += traffic.downPackNum;
upPayLoad += traffic.upPayLoad;
downPayLoad += traffic.downPayLoad;
}
context.write(k2,new TrafficWritable(upPackNum+"",downPackNum+"",upPayLoad+"",
downPayLoad+""));
}
}
}
最終輸出結果如下:
附實驗數據下載地址:
https://yunpan.cn/cqcEy6QSzUEs7 訪問密碼 2fb1。數據來源:網易雲課堂hadoop大數據實戰
