SqlAlchemy ORM
SQLAlchemy是Python編程語言下的一款ORM框架,該框架建立在數據庫API之上,使用關系對象映射進行數據庫操作,簡言之便是:將對象轉換成SQL,然后使用數據API執行SQL並獲取執行結果.
Python MySQL API (DBAPI)
通過 pymysql 連接管理mysql

create table students ( id int not null auto_increment primary key, name char(8) not null, sex char(4) not null, age tinyint unsigned not null, tel char(13) null default "-" );
1.插入數據
import pymysql
conn = pymysql.connect("127.0.0.1",user='root',db='test') cur = conn.cursor() recount = cur.execute("insert into students(name,sex,age,tel) values('koka','man',18,'10000')") recount2 = cur.execute("insert into students(name,sex,age,tel) values('akok','man',20,'10010')")
li = [ ("hehe","man",11,"110"), ("xixi","falme",12,"112")] recount3 = cur.executemany("insert into students(name,sex,age,tel) values(%s,%s,%s,%s)",li)
conn.commit()
cur.close()
conn.close()
print(recount, recount2, recount3)
2.刪除數據
import pymysql
conn = pymysql.connect("127.0.0.1",user='root',db='test')
cur = conn.cursor()
recount = cur.execute("delete from students where name='akok';")
conn.commit()
cur.close()
conn.close()
3.修改數據
import pymysql
conn = pymysql.connect("127.0.0.1",user='root',db='test')
cur = conn.cursor()
recount = cur.execute("update students set age=24 where name='alex';")
conn.commit()
cur.close()
conn.close()
4.查數據
import pymysql
conn = pymysql.connect("127.0.0.1",user='root',db='test')
cur = conn.cursor()
recount = cur.execute("update students set age=24 where name='alex';") recount = cur.execute("select * from students;") print(cur.fetchone()) #匹配一條 print(cur.fetchone()) #cur.scroll(-1,mode="relative") #回退一條 print(cur.fetchone()) print(cur.fetchone()) cur.scroll(0,mode='absolute')#重置 print(cur.fetchone()) print(cur.fetchone())
conn.commit()
cur.close()
conn.close()
############################## fetchall ##############################
import pymysql
conn = pymysql.connect("127.0.0.1",user='root',db='test')
cur = conn.cursor()
recount = cur.execute("select * from user;") nret = cur.fetchall() #所有查詢到的數據以元組返回 conn.commit() cur.close() conn.close() print(nret) for i in nret: print(i[0],i[1])
Dialect用於和數據API進行交流,根據配置文件的不同調用不同的數據庫API,從而實現對數據庫的操作,如:
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多詳見:http://docs.sqlalchemy.org/en/latest/dialects/index.html
步驟一:
使用 Engine/ConnectionPooling/Dialect 進行數據庫操作,Engine使用ConnectionPooling連接數據庫,然后再通過Dialect執行SQL語句。
from sqlalchemy import create_engine import pymysql engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/test",max_overflow=5) engine.execute( "INSERT INTO hosts (hostname,ip_addr,port,group_id) VALUES ('web4','4.4.4.4',22,3)" ) result = engine.execute("select * from hosts") result.fetchall()
步驟二:
使用 Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 進行數據庫操作。Engine使用Schema Type創建一個特定的結構對象,之后通過SQL Expression Language將該對象轉換成SQL語句,然后通過 ConnectionPooling 連接數據庫,再然后通過 Dialect 執行SQL,並獲取結果。
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey, select import pymysql #生成metadata類 metadata = MetaData() #創建user表,繼承metadata類 #Engine使用Schama Type創建一個特定的結構對象 user = Table("user", metadata, Column("id", Integer, primary_key=True), Column("name", String(20))) color = Table("color", metadata, Column("id", Integer, primary_key=True), Column("name", String(20))) #通過ConnectionPooling 連接數據庫 engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/test", max_overflow=5,echo=True) #通過Dialect執行SQL #metadata.create_all(engine) #創建表結構
增刪改查操作
""""增刪改查""""" conn = engine.connect() #conn.execute(user.insert(),{'id':2,"name":"koka"}) #conn.close() #sql = user.insert().values(id=2, name='akok') #conn.execute(sql) #conn.close() #sql = user.delete().where(user.c.id >1) #conn.execute(sql) #conn.close() #sql = user.update().values(fullname=user.c.name) #sql = user.update().where(user.c.name == "koka").values(name="okak") #conn.execute(sql) #conn.close() #sql = select([user, ]) => selct * from user #sql = select([user.c.id, ])=> select id from user #sql = select([user.c.name,color.c.name]).where(user.c.id==color.c.id) => #SELECT user.name, color.name FROM user, color WHERE user.id = color.id #sql = select([user.c.name]).order_by(user.c.name) => #SELECT user.name FROM user ORDER BY user.name #sql = select([user, ]).group_by(user.c.name) => #SELECT user.id, user.name FROM user GROUP BY user.name #conn.execute(sql) #conn.close()
實例:
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String from sqlalchemy.orm import sessionmaker import pymysql Base = declarative_base() #生成一個SQLORM基類 engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/test",echo=True)
class Host(Base): __tablename__ = "hosts" id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) ip_addr = Column(String(128), unique=True, nullable=False) port = Column(Integer, default=22)
def __repr__(self): return "<Host(hostname='%s',ip_addr='%s')>" % (self.hostname,self.ip_addr) """
# 無法刪除之前創建的hosts表, # 這可能是MySQL在InnoDB中設置了foreign key關聯,造成無法更新或刪除數據。 # 可以通過設置FOREIGN_KEY_CHECKS變量來避免這種情況。 # SET FOREIGN_KEY_CHECKS = 0;
CREATE TABLE hosts ( id INTEGER NOT NULL AUTO_INCREMENT, hostname VARCHAR(64) NOT NULL, ip_addr VARCHAR(128) NOT NULL, port INTEGER, PRIMARY KEY (id), UNIQUE (hostname), UNIQUE (ip_addr) ) """ #Base.metadata.create_all(engine) #創建所有表結構 metadata.create_all(engine) if __name__ == "__main__": SessionCls = sessionmaker(bind=engine) session = SessionCls() #h1 = Host(hostname="localhost", ip_addr="127.0.0.1") #h2 = Host(hostname="mysql", ip_addr="1.1.1.1", port=3306) #h3 = Host(hostname="web", ip_addr="10.0.0.10", port=8080) #session.add(h1) #h2.hostname = "mysqldb" #只要沒提交,此時修改也沒問題 #session.add_all([h1, h2, h3]) #session.rollback() #session.commit() res = session.query(Host).filter(Host.hostname.in_(["localhost", "mysqldb"])).all() print(res) """ [<Host(hostname='localhost',ip_addr='127.0.0.1')>, <Host(hostname='mysqldb',ip_addr='1.1.1.1')>] """
更多內容詳見:
http://www.jianshu.com/p/e6bba189fcbd
http://docs.sqlalchemy.org/en/latest/core/expression_api.html
注:SQLAlchemy無法修改表結構,如果需要可以使用SQLAlchemy開發者開源的另外一個軟件Alembic來完成.
步驟三:
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有組件對數據進行操作。根據類創建對象,對象轉換成SQL,執行SQL。
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine import pymysql engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/test", max_overflow=5, echo=True) #echo顯示sql語句創建過程 Base = declarative_base() #生成一個SQLORM基類
#創建表 class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True) name = Column(String(50)) def __repr__(self): return "<User(id='%s',name='%s')>" % (self.id,self.name) # 尋找Base的所有子類,按照子類的結構在數據庫中生成對應的數據表信息 #Base.metadata.create_all(engine) if __name__ == "__main__": Session = sessionmaker(bind=engine) session = Session() #增 #sql1 = User(id=1,name="haha") #sql2 = User(id=2,name="hehe") #session.add(sql1) #session.add_all([sql1, sql2]) #session.commit()
#改 #session.query(User).filter(User.id >1).update({"name":"xixi"}) #session.commit()
#刪 #session.query(User).filter(User.id == 1).delete() #session.commit()
#查 r1 = session.query(User).filter_by(name="xixi").first()
r2 = session.query(User).filter_by(name="xixi").all()
r3 = session.query(User).filter(User.name.in_(["haha", "hehe", "xixi"])).all()
r4 = session.query(User.name.label("name_label")).all() #SELECT users.name AS name_label FROM users
r5 = session.query(User).order_by(User.id).all() #SELECT users.id AS users_id, users.name AS users_name FROM users ORDER BY users.id
r6 = session.query(User).order_by(User.id)[1:2] #SELECT users.id AS users_id, users.name AS users_name FROM users ORDER BY users.id LIMIT 1,2
print(r1, r2, r3, r4, r5, r6) session.commit()
外鍵關聯
- FOREIGN KEY 約束是大多數(但不是所有)的關系型數據庫中可以鏈接到主鍵列,或者擁有UNIQUE約束的列。
- FOREIGN KEY 能夠引用多重列主鍵,並且其自身擁有多重列,被稱為“復合外鍵”(composite foreign key)。其也能夠引用這些列的子集(subset)。
- FOREIGN KEY 列作為對於其引用的列或者行的變化的響應能夠自動更新其自。
- FOREIGN KEY 能夠引用其自身的表,這個就涉及到“自引用”(self-referential)的外鍵了。
一多對關系表,一個主機屬於一個組,一個組可以擁有多個主機
from sqlalchemy import Table, Column, Integer, ForeignKey, create_engine, String from sqlalchemy.orm import relationship,sessionmaker from sqlalchemy.ext.declarative import declarative_base
import pymysql engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/test", max_overflow=5) Base = declarative_base() class Host(Base): __tablename__ = 'host1' id = Column(Integer,primary_key=True,autoincrement=True) hostname = Column(String(64),unique=True,nullable=False) ip_addr = Column(String(128),unique=True,nullable=False) port = Column(Integer,default=22) group_id = Column(Integer, ForeignKey("group1.id")) #主機關聯組id
#表示在group表中可以通過host_list查看host表內容,在host表中可以通過group查看group表內容
group = relationship("Group", backref="host")
#group_list = relationship("Group",back_populates="host_list") #使用populates兩邊名稱要一致
class Group(Base): __tablename__ = "group1" id = Column(Integer, primary_key=True) name = Column(String(64),unique=True, nullable=False) #host_id = Column(Integer, ForeignKey("hosts.id")) #創建一個組就要指定一個主機id變成一對一的關系 #host_list = relationship("Host",back_populates="group_list") #使用populates兩邊名稱要一致,兩個表對應設置名稱group_list和host_list
#Base.metadata.create_all(engine) #構建表 if __name__ == "__main__": SessionCls = sessionmaker(bind=engine) session = SessionCls()
#建組
g1 = Group(name="g1") g2 = Group(name="g2") g3 = Group(name="g3")
#建主機,關聯組 h1 = Host(hostname="localhost1", ip_addr="127.0.0.1",group_id="1") h2 = Host(hostname="web2", ip_addr="192.168.1.10",group_id="2") h3 = Host(hostname="agent2", ip_addr="192.168.1.20",group_id="3") session.add_all([g1, g2, g3]) session.add_all([h1, h2, h3]) session.commit()
#兩個表relationshap后,通過host表查詢h1記錄再通過group_id查找group表中對應的name
h = session.query(Host).filter(Host.id == 1).first()
print("h1:"h.group.name)
session.commit()
映射關系
更多內容詳見:http://www.xker.com/page/e2015/04/179550.html
多對多關系表,需要第三張表關聯兩張表
from sqlalchemy import Table, Column, Integer, ForeignKey, and_, or_, func, create_engine, String from sqlalchemy.orm import relationship, sessionmaker from sqlalchemy.ext.declarative import declarative_base import pymysql Base = declarative_base()
engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/test", max_overflow=5, echo=True) Host2Group = Table("host_2_group",Base.metadata, Column("host_id", ForeignKey("host.id"),primary_key=True), Column("group_id", ForeignKey("group.id"),primary_key=True) ) class Host(Base): __tablename__ = "host" id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) ip_addr = Column(String(128), unique=True, nullable=False) port = Column(Integer, default=22) groups = relationship("Group", secondary=Host2Group, backref="host_list") #用於顯示查詢結果 def __repr__(self): return "<id=%s, hostame=%s, ip_addr=%s>" %(self.id, self.hostname, self.ip_addr) class Group(Base): __tablename__ = "group" id = Column(Integer, primary_key=True) name = Column(String(64),unique=True,nullable=False) def __repr__(self): return "<id=%s, name=%s>" % (self.id, self.name) #Base.metadata.create_all(engine) #創建數據結構 if __name__ == "__main__": SessionCls = sessionmaker(bind=engine) session = SessionCls()
#創建組 #h1 = Host(hostname="localhost",ip_addr="127.0.0.1") #h2 = Host(hostname="roomsvr",ip_addr="10.10.10.10") #session.add(h1) #session.add_all([h1, h2])
#創建主機 #g1 = Group(name='g1') #g2 = Group(name='g2') #g3 = Group(name='g3') #g4 = Group(name='g4') #session.add_all([g1,g2,g3,g4]) #session.commit()
#組和主機關聯 groups = session.query(Group).all() g1 = session.query(Group).first() g2 = session.query(Group).filter(Group.name=="g2").first() h2 = session.query(Host).filter(Host.hostname=="localhost").first() h2.groups = groups #將主機同主機組關聯
#h2.groups.append(groups)
session.commit()
#關聯表查詢 print("=====>",h2.groups) print("=====g1>",g1.host_list) print("=====g2>",g2.host_list) #h2.groups.pop()
session.commit()
join
幾個Join的區別 http://stackoverflow.com/questions/38549/difference-between-inner-and-outer-joins
- left join(左聯接) 返回包括左表中的所有記錄和右表中交集的記錄
- right join(右聯接) 返回包括右表中的所有記錄和左表中交集的記錄
- inner join(等值連接) 只返回兩個表中的交集字段
#join 接上例代碼
objs = session.query(Host).join(Host.groups).group_by(Group.name).all()#取兩個表的交集,按組名排序
#SELECT * FROM host INNER JOIN host_2_group ON host.id = host_2_group.host_id #INNER JOIN `group` ON `group`.id = host_2_group.group_id GROUP BY `group`.id
#count
objs = session.query(Host, func.count(Host.hostname)).group_by(Host.id).all()
#SELECT * count(host.hostname) FROM host GROUP BY host.id
objs = session.query(Host,func.count(Group.name)).\ join(Host.groups).group_by(Group.name).all()
#SELECT host.id,host.hostname,host.ip_addr,host.port,count(`group`.name) as count_1 FROM host\ #INNER JOIN host_2_group ON host.id = host_2_group.host_id INNER JOIN `group` ON `group`.id = \ #host_2_group.group_id GROUP BY `group`.name
#print(objs) session.commit()
更多ORM內容:
http://files.cnblogs.com/files/wupeiqi/sqlalchemy.pdf.zip