之前角點檢測的時候提到過角點檢測的算法,第一個是cornerHarris計算角點,但是這種角點檢測算法容易出現聚簇現象以及角點信息有丟失和位置偏移現象,所以后面又提出一種名為
shi_tomasi的角點檢測算法,名稱goodFeatureToTrack,opencv的feature2D接口集成了這種算法,名稱為GFTTDetector,接口如下
Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
maxCorners 最大角點數目 qualityLevel角點可以接受的最小特征值,一般0.1或者0.01,不超過1 minDistance 加點之間的最小距離
blockSize倒數自相關矩陣的鄰域范圍 useHarrisDetector 是否使用角點檢測 khessian自相關矩陣的相對權重系數 一般為0.04
使用代碼如下
1 int main(int argc,char* argv[]) 2 { 3 Mat srcImage = imread("F:\\opencv\\OpenCVImage\\FeatureDetectSrc1.jpg"); 4 Mat srcGrayImage; 5 if (srcImage.channels() == 3) 6 { 7 cvtColor(srcImage,srcGrayImage,CV_RGB2GRAY); 8 } 9 else 10 { 11 srcImage.copyTo(srcGrayImage); 12 } 13 vector<KeyPoint>detectKeyPoint; 14 Mat keyPointImage1,keyPointImage2; 15 16 Ptr<GFTTDetector> gftt = GFTTDetector::create(); 17 gftt->detect(srcGrayImage,detectKeyPoint); 18 drawKeypoints(srcImage,detectKeyPoint,keyPointImage1,Scalar(0,0,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS); 19 drawKeypoints(srcImage,detectKeyPoint,keyPointImage2,Scalar(0,0,255),DrawMatchesFlags::DEFAULT); 20 21 imshow("src image",srcImage); 22 imshow("keyPoint image1",keyPointImage1); 23 imshow("keyPoint image2",keyPointImage2); 24 25 imwrite("F:\\opencv\\OpenCVImage\\FeatureDetectSrc1GFTTKeyPointImageDefault.jpg",keyPointImage2); 26 27 waitKey(0); 28 return 0; 29 }
顯示圖像