MySQL5.6 PERFORMANCE_SCHEMA 說明


背景:

      MySQL 5.5開始新增一個數據庫:PERFORMANCE_SCHEMA,主要用於收集數據庫服務器性能參數。並且庫里表的存儲引擎均為PERFORMANCE_SCHEMA,而用戶是不能創建存儲引擎為PERFORMANCE_SCHEMA的表。MySQL5.5默認是關閉的,需要手動開啟,在配置文件里添加:

[mysqld]
performance_schema=ON

查看是否開啟:

mysql>show variables like 'performance_schema';
+--------------------+-------+
| Variable_name      | Value |
+--------------------+-------+
| performance_schema | ON    |
+--------------------+-------+

從MySQL5.6開始,默認打開,本文就從MySQL5.6來說明,在數據庫使用當中PERFORMANCE_SCHEMA的一些比較常用的功能。具體的信息可以查看官方文檔

相關表信息:

配置(setup)表:

zjy@performance_schema 10:16:56>show tables like '%setup%';
+----------------------------------------+
| Tables_in_performance_schema (%setup%) |
+----------------------------------------+
| setup_actors                           |
| setup_consumers                        |
| setup_instruments                      |
| setup_objects                          |
| setup_timers                           |
+----------------------------------------+

1,setup_actors:配置用戶緯度的監控,默認監控所有用戶。

zjy@performance_schema 10:19:11>select * from setup_actors;
+------+------+------+
| HOST | USER | ROLE |
+------+------+------+
| %    | %    | %    |
+------+------+------+

2,setup_consumers:配置events的消費者類型,即收集的events寫入到哪些統計表中。

zjy@: performance_schema 10:23:35>select * from setup_consumers;
+--------------------------------+---------+
| NAME                           | ENABLED |
+--------------------------------+---------+
| events_stages_current          | NO      |
| events_stages_history          | NO      |
| events_stages_history_long     | NO      |
| events_statements_current      | YES     |
| events_statements_history      | NO      |
| events_statements_history_long | NO      |
| events_waits_current           | NO      |
| events_waits_history           | NO      |
| events_waits_history_long      | NO      |
| global_instrumentation         | YES     |
| thread_instrumentation         | YES     |
| statements_digest              | YES     |
+--------------------------------+---------+

這里需要說明的是需要查看哪個就更新其ENABLED列為YES。如:

zjy@performance_schema 10:25:02>update setup_consumers set ENABLED='YES' where NAME in ('events_stages_current','events_waits_current');
Query OK, 2 rows affected (0.00 sec)

更新完后立即生效,但是服務器重啟之后又會變回默認值,要永久生效需要在配置文件里添加:

[mysqld]
#performance_schema
performance_schema_consumer_events_waits_current=on
performance_schema_consumer_events_stages_current=on
performance_schema_consumer_events_statements_current=on
performance_schema_consumer_events_waits_history=on
performance_schema_consumer_events_stages_history=on
performance_schema_consumer_events_statements_history=on

即在這些表的前面加上:performance_schema_consumer_xxx。表setup_consumers里面的值有個層級關系:

global_instrumentation > thread_instrumentation = statements_digest > events_stages_current = events_statements_current = events_waits_current > events_stages_history = events_statements_history = events_waits_history > events_stages_history_long = events_statements_history_long = events_waits_history_long

只有上一層次的為YES,才會繼續檢查該本層為YES or NO。global_instrumentation是最高級別consumer,如果它設置為NO,則所有的consumer都會忽略。其中history和history_long存的是current表的歷史記錄條數,history表記錄了每個線程最近等待的10個事件,而history_long表則記錄了最近所有線程產生的10000個事件,這里的10和10000都是可以配置的。這三個表表結構相同,history和history_long表數據都來源於current表。長度通過控制參數:

zjy@performance_schema 11:10:03>show variables like 'performance_schema%history%size';
+--------------------------------------------------------+-------+
| Variable_name                                          | Value |
+--------------------------------------------------------+-------+
| performance_schema_events_stages_history_long_size     | 10000 |
| performance_schema_events_stages_history_size          | 10    |
| performance_schema_events_statements_history_long_size | 10000 |
| performance_schema_events_statements_history_size      | 10    |
| performance_schema_events_waits_history_long_size      | 10000 |
| performance_schema_events_waits_history_size           | 10    |
+--------------------------------------------------------+-------+

3,setup_instruments:配置具體的instrument,主要包含4大類:idle、stage/xxx、statement/xxx、wait/xxx:

zjy@performance_schema 10:56:35>select name,count(*) from setup_instruments group by LEFT(name,5);
+---------------------------------+----------+
| name                            | count(*) |
+---------------------------------+----------+
| idle                            |        1 |
| stage/sql/After create          |      111 |
| statement/sql/select            |      179 |
| wait/synch/mutex/sql/PAGE::lock |      296 |
+---------------------------------+----------+

idle表示socket空閑的時間,stage類表示語句的每個執行階段的統計,statement類統計語句維度的信息,wait類統計各種等待事件,比如IO,mutux,spin_lock,condition等。

4,setup_objects:配置監控對象,默認對mysql,performance_schema和information_schema中的表都不監控,而其它DB的所有表都監控。

zjy@performance_schema 11:00:18>select * from setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA      | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
| TABLE       | mysql              | %           | NO      | NO    |
| TABLE       | performance_schema | %           | NO      | NO    |
| TABLE       | information_schema | %           | NO      | NO    |
| TABLE       | %                  | %           | YES     | YES   |
+-------------+--------------------+-------------+---------+-------+

5,setup_timers:配置每種類型指令的統計時間單位。MICROSECOND表示統計單位是微妙,CYCLE表示統計單位是時鍾周期,時間度量與CPU的主頻有關,NANOSECOND表示統計單位是納秒。但無論采用哪種度量單位,最終統計表中統計的時間都會裝換到皮秒。(1秒=1000000000000皮秒)

zjy@performance_schema 11:05:12>select * from setup_timers;
+-----------+-------------+
| NAME      | TIMER_NAME  |
+-----------+-------------+
| idle      | MICROSECOND |
| wait      | CYCLE       |
| stage     | NANOSECOND  |
| statement | NANOSECOND  |
+-----------+-------------+

instance表

1,cond_instances:條件等待對象實例

表中記錄了系統中使用的條件變量的對象,OBJECT_INSTANCE_BEGIN為對象的內存地址。

2,file_instances:文件實例

表中記錄了系統中打開了文件的對象,包括ibdata文件,redo文件,binlog文件,用戶的表文件等,open_count顯示當前文件打開的數目,如果重來沒有打開過,不會出現在表中。

zjy@performance_schema 11:20:04>select * from file_instances limit 2,5;
+---------------------------------+--------------------------------------+------------+
| FILE_NAME                       | EVENT_NAME                           | OPEN_COUNT |
+---------------------------------+--------------------------------------+------------+
| /var/lib/mysql/mysql/plugin.frm | wait/io/file/sql/FRM                 |          0 |
| /var/lib/mysql/mysql/plugin.MYI | wait/io/file/myisam/kfile            |          1 |
| /var/lib/mysql/mysql/plugin.MYD | wait/io/file/myisam/dfile            |          1 |
| /var/lib/mysql/ibdata1          | wait/io/file/innodb/innodb_data_file |          2 |
| /var/lib/mysql/ib_logfile0      | wait/io/file/innodb/innodb_log_file  |          2 |
+---------------------------------+--------------------------------------+------------+

3,mutex_instances:互斥同步對象實例

表中記錄了系統中使用互斥量對象的所有記錄,其中name為:wait/synch/mutex/*。LOCKED_BY_THREAD_ID顯示哪個線程正持有mutex,若沒有線程持有,則為NULL。

4,rwlock_instances: 讀寫鎖同步對象實例

表中記錄了系統中使用讀寫鎖對象的所有記錄,其中name為 wait/synch/rwlock/*。WRITE_LOCKED_BY_THREAD_ID為正在持有該對象的thread_id,若沒有線程持有,則為NULL。READ_LOCKED_BY_COUNT為記錄了同時有多少個讀者持有讀鎖。(通過 events_waits_current 表可以知道,哪個線程在等待鎖;通過rwlock_instances知道哪個線程持有鎖。rwlock_instances的缺陷是,只能記錄持有寫鎖的線程,對於讀鎖則無能為力)。

5,socket_instances:活躍會話對象實例
表中記錄了thread_id,socket_id,ip和port,其它表可以通過thread_id與socket_instance進行關聯,獲取IP-PORT信息,能夠與應用對接起來。
event_name主要包含3類:
wait/io/socket/sql/server_unix_socket,服務端unix監聽socket
wait/io/socket/sql/server_tcpip_socket,服務端tcp監聽socket
wait/io/socket/sql/client_connection,客戶端socket

:Wait表

1,events_waits_current:記錄了當前線程等待的事件

2,events_waits_history:記錄了每個線程最近等待的10個事件

3,events_waits_history_long:記錄了最近所有線程產生的10000個事件

表結構定義如下:

CREATE TABLE `events_waits_current` (
  `THREAD_ID` bigint(20) unsigned NOT NULL COMMENT '線程ID',
  `EVENT_ID` bigint(20) unsigned NOT NULL COMMENT '當前線程的事件ID,和THREAD_ID確定唯一',
  `END_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '當事件開始時,這一列被設置為NULL。當事件結束時,再更新為當前的事件ID',
  `EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',
  `SOURCE` varchar(64) DEFAULT NULL COMMENT '該事件產生時的源碼文件',
  `TIMER_START` bigint(20) unsigned DEFAULT NULL COMMENT '事件開始時間(皮秒)',
  `TIMER_END` bigint(20) unsigned DEFAULT NULL COMMENT '事件結束結束時間(皮秒)',
  `TIMER_WAIT` bigint(20) unsigned DEFAULT NULL COMMENT '事件等待時間(皮秒)',
  `SPINS` int(10) unsigned DEFAULT NULL COMMENT '',
  `OBJECT_SCHEMA` varchar(64) DEFAULT NULL COMMENT '庫名',
  `OBJECT_NAME` varchar(512) DEFAULT NULL COMMENT '文件名、表名、IP:SOCK值',
  `OBJECT_TYPE` varchar(64) DEFAULT NULL COMMENT 'FILE、TABLE、TEMPORARY TABLE',
  `INDEX_NAME` varchar(64) DEFAULT NULL COMMENT '索引名',
  `OBJECT_INSTANCE_BEGIN` bigint(20) unsigned NOT NULL COMMENT '內存地址',
  `NESTING_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '該事件對應的父事件ID',
  `NESTING_EVENT_TYPE` enum('STATEMENT','STAGE','WAIT') DEFAULT NULL COMMENT '父事件類型(STATEMENT, STAGE, WAIT)',
  `OPERATION` varchar(32) NOT NULL COMMENT '操作類型(lock, read, write)',
  `NUMBER_OF_BYTES` bigint(20) DEFAULT NULL COMMENT '',
  `FLAGS` int(10) unsigned DEFAULT NULL COMMENT '標記'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

:Stage 表 

1,events_stages_current:記錄了當前線程所處的執行階段

2,events_stages_history:記錄了當前線程所處的執行階段10條歷史記錄

3,events_stages_history_long:記錄了當前線程所處的執行階段10000條歷史記錄

表結構定義如下:

CREATE TABLE `events_stages_current` (
  `THREAD_ID` bigint(20) unsigned NOT NULL COMMENT '線程ID',
  `EVENT_ID` bigint(20) unsigned NOT NULL COMMENT '事件ID',
  `END_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '結束事件ID',
  `EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',
  `SOURCE` varchar(64) DEFAULT NULL COMMENT '源碼位置',
  `TIMER_START` bigint(20) unsigned DEFAULT NULL COMMENT '事件開始時間(皮秒)',
  `TIMER_END` bigint(20) unsigned DEFAULT NULL COMMENT '事件結束結束時間(皮秒)',
  `TIMER_WAIT` bigint(20) unsigned DEFAULT NULL COMMENT '事件等待時間(皮秒)',
  `NESTING_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '該事件對應的父事件ID',
  `NESTING_EVENT_TYPE` enum('STATEMENT','STAGE','WAIT') DEFAULT NULL COMMENT '父事件類型(STATEMENT, STAGE, WAIT)'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

:Statement 表

1,events_statements_current:通過 thread_id+event_id可以唯一確定一條記錄。Statments表只記錄最頂層的請求,SQL語句或是COMMAND,每條語句一行。event_name形式為statement/sql/*,或statement/com/*

2,events_statements_history

3,events_statements_history_long

表結構定義如下:

CREATE TABLE `events_statements_current` (
  `THREAD_ID` bigint(20) unsigned NOT NULL COMMENT '線程ID',
  `EVENT_ID` bigint(20) unsigned NOT NULL COMMENT '事件ID',
  `END_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '結束事件ID',
  `EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',
  `SOURCE` varchar(64) DEFAULT NULL COMMENT '源碼位置',
  `TIMER_START` bigint(20) unsigned DEFAULT NULL COMMENT '事件開始時間(皮秒)',
  `TIMER_END` bigint(20) unsigned DEFAULT NULL COMMENT '事件結束結束時間(皮秒)',
  `TIMER_WAIT` bigint(20) unsigned DEFAULT NULL COMMENT '事件等待時間(皮秒)',
  `LOCK_TIME` bigint(20) unsigned NOT NULL COMMENT '鎖時間',
  `SQL_TEXT` longtext COMMENT '記錄SQL語句',
  `DIGEST` varchar(32) DEFAULT NULL COMMENT '對SQL_TEXT做MD5產生的32位字符串',
  `DIGEST_TEXT` longtext COMMENT '將語句中值部分用問號代替,用於SQL語句歸類',
  `CURRENT_SCHEMA` varchar(64) DEFAULT NULL COMMENT '默認的數據庫名',
  `OBJECT_TYPE` varchar(64) DEFAULT NULL COMMENT '保留字段',
  `OBJECT_SCHEMA` varchar(64) DEFAULT NULL COMMENT '保留字段',
  `OBJECT_NAME` varchar(64) DEFAULT NULL COMMENT '保留字段',
  `OBJECT_INSTANCE_BEGIN` bigint(20) unsigned DEFAULT NULL COMMENT '內存地址',
  `MYSQL_ERRNO` int(11) DEFAULT NULL COMMENT '',
  `RETURNED_SQLSTATE` varchar(5) DEFAULT NULL COMMENT '',
  `MESSAGE_TEXT` varchar(128) DEFAULT NULL COMMENT '信息',
  `ERRORS` bigint(20) unsigned NOT NULL COMMENT '錯誤數目',
  `WARNINGS` bigint(20) unsigned NOT NULL COMMENT '警告數目',
  `ROWS_AFFECTED` bigint(20) unsigned NOT NULL COMMENT '影響的數目',
  `ROWS_SENT` bigint(20) unsigned NOT NULL COMMENT '返回的記錄數',
  `ROWS_EXAMINED` bigint(20) unsigned NOT NULL COMMENT '讀取掃描的記錄數目',
  `CREATED_TMP_DISK_TABLES` bigint(20) unsigned NOT NULL COMMENT '創建磁盤臨時表數目',
  `CREATED_TMP_TABLES` bigint(20) unsigned NOT NULL COMMENT '創建臨時表數目',
  `SELECT_FULL_JOIN` bigint(20) unsigned NOT NULL COMMENT 'join時,第一個表為全表掃描的數目',
  `SELECT_FULL_RANGE_JOIN` bigint(20) unsigned NOT NULL COMMENT '引用表采用range方式掃描的數目',
  `SELECT_RANGE` bigint(20) unsigned NOT NULL COMMENT 'join時,第一個表采用range方式掃描的數目',
  `SELECT_RANGE_CHECK` bigint(20) unsigned NOT NULL COMMENT '',
  `SELECT_SCAN` bigint(20) unsigned NOT NULL COMMENT 'join時,第一個表位全表掃描的數目',
  `SORT_MERGE_PASSES` bigint(20) unsigned NOT NULL COMMENT '',
  `SORT_RANGE` bigint(20) unsigned NOT NULL COMMENT '范圍排序數目',
  `SORT_ROWS` bigint(20) unsigned NOT NULL COMMENT '排序的記錄數目',
  `SORT_SCAN` bigint(20) unsigned NOT NULL COMMENT '全表排序數目',
  `NO_INDEX_USED` bigint(20) unsigned NOT NULL COMMENT '沒有使用索引數目',
  `NO_GOOD_INDEX_USED` bigint(20) unsigned NOT NULL COMMENT '',
  `NESTING_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '該事件對應的父事件ID',
  `NESTING_EVENT_TYPE` enum('STATEMENT','STAGE','WAIT') DEFAULT NULL COMMENT '父事件類型(STATEMENT, STAGE, WAIT)'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

:Connection 表

1,users:記錄用戶連接數信息

2,hosts:記錄了主機連接數信息

3,accounts:記錄了用戶主機連接數信息

zjy@performance_schema 12:03:27>select * from users;
+------------------+---------------------+-------------------+
| USER             | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+------------------+---------------------+-------------------+
| debian-sys-maint |                   0 |                36 |
| zjy              |                   1 |             22285 |
| dchat_php        |                   0 |             37864 |
| dxyslave         |                   2 |                 9 |
| nagios           |                   0 |             10770 |
| dchat_data       |                 140 |           2233023 |
| NULL             |                   0 |             15866 |
| dchat_api        |                 160 |           2754212 |
| mha_data         |                   1 |                36 |
| backup           |                   0 |                15 |
| cacti            |                   0 |              4312 |
| kol              |                  10 |            172414 |
+------------------+---------------------+-------------------+
12 rows in set (0.00 sec)

zjy@performance_schema 12:03:34>select * from hosts;
+-----------------+---------------------+-------------------+
| HOST            | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+-----------------+---------------------+-------------------+
| 192.168.100.218 |                 150 |           2499422 |
| 192.168.100.240 |                  10 |            172429 |
| 192.168.100.139 |                   0 |               698 |
| 192.168.100.21  |                   0 |                 2 |
| 192.168.100.220 |                 150 |           2526136 |
| 192.168.100.25  |                   1 |                 7 |
| NULL            |                   0 |             15867 |
| 192.168.100.241 |                   0 |             21558 |
| 192.168.100.191 |                   1 |                34 |
| localhost       |                   0 |             10807 |
| 192.168.100.118 |                   1 |                 2 |
| 192.168.100.251 |                   0 |              4312 |
| 192.168.100.23  |                   1 |                31 |
| 192.168.100.193 |                   0 |                15 |
+-----------------+---------------------+-------------------+
14 rows in set (0.01 sec)

zjy@performance_schema 12:05:21>select * from accounts;
+------------------+-----------------+---------------------+-------------------+
| USER             | HOST            | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+------------------+-----------------+---------------------+-------------------+
| cacti            | 192.168.100.251 |                   0 |              4313 |
| debian-sys-maint | localhost       |                   0 |                36 |
| backup           | 192.168.100.193 |                   0 |                15 |
| dchat_api        | 192.168.100.220 |                  80 |           1382585 |
| dchat_php        | 192.168.100.220 |                   0 |             20292 |
| zjy              | 192.168.100.139 |                   0 |               698 |
| zjy              | 192.168.100.241 |                   0 |             21558 |
| mha_data         | 192.168.100.191 |                   1 |                34 |
| dxyslave         | 192.168.100.118 |                   1 |                 2 |
| kol              | 192.168.100.240 |                  10 |            172431 |
| dxyslave         | 192.168.100.25  |                   1 |                 7 |
| dchat_data       | 192.168.100.218 |                  70 |           1109974 |
| zjy              | 192.168.100.23  |                   1 |                31 |
| dchat_php        | 192.168.100.218 |                   0 |             17572 |
| dchat_data       | 192.168.100.220 |                  70 |           1123306 |
| NULL             | NULL            |                   0 |             15868 |
| mha_data         | 192.168.100.21  |                   0 |                 2 |
| dchat_api        | 192.168.100.218 |                  80 |           1371918 |
| nagios           | localhost       |                   0 |             10771 |
+------------------+-----------------+---------------------+-------------------+
View Code

七:Summary 表: Summary表聚集了各個維度的統計信息包括表維度,索引維度,會話維度,語句維度和鎖維度的統計信息

1,events_waits_summary_global_by_event_name:按等待事件類型聚合,每個事件一條記錄

CREATE TABLE `events_waits_summary_global_by_event_name` (
  `EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',
  `COUNT_STAR` bigint(20) unsigned NOT NULL COMMENT '事件計數',
  `SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '總的等待時間',
  `MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最小等待時間',
  `AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '平均等待時間',
  `MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最大等待時間'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

2,events_waits_summary_by_instance:按等待事件對象聚合,同一種等待事件,可能有多個實例,每個實例有不同的內存地址,因此
event_name+object_instance_begin唯一確定一條記錄。

CREATE TABLE `events_waits_summary_by_instance` (
  `EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',
  `OBJECT_INSTANCE_BEGIN` bigint(20) unsigned NOT NULL COMMENT '內存地址',
  `COUNT_STAR` bigint(20) unsigned NOT NULL COMMENT '事件計數',
  `SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '總的等待時間',
  `MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最小等待時間',
  `AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '平均等待時間',
  `MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最大等待時間'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

3,events_waits_summary_by_thread_by_event_name:按每個線程和事件來統計,thread_id+event_name唯一確定一條記錄。

CREATE TABLE `events_waits_summary_by_thread_by_event_name` (
  `THREAD_ID` bigint(20) unsigned NOT NULL COMMENT '線程ID',
  `EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',
  `COUNT_STAR` bigint(20) unsigned NOT NULL COMMENT '事件計數',
  `SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '總的等待時間',
  `MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最小等待時間',
  `AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '平均等待時間',
  `MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最大等待時間'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

4,events_stages_summary_global_by_event_name:按事件階段類型聚合,每個事件一條記錄,表結構同上。

5,events_stages_summary_by_thread_by_event_name:按每個線程和事件來階段統計,表結構同上。

6,events_statements_summary_by_digest:按照事件的語句進行聚合。

CREATE TABLE `events_statements_summary_by_digest` (
  `SCHEMA_NAME` varchar(64) DEFAULT NULL COMMENT '庫名',
  `DIGEST` varchar(32) DEFAULT NULL COMMENT '對SQL_TEXT做MD5產生的32位字符串。如果為consumer表中沒有打開statement_digest選項,則為NULL',
  `DIGEST_TEXT` longtext COMMENT '將語句中值部分用問號代替,用於SQL語句歸類。如果為consumer表中沒有打開statement_digest選項,則為NULL。',
  `COUNT_STAR` bigint(20) unsigned NOT NULL COMMENT '事件計數',
  `SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '總的等待時間',
  `MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最小等待時間',
  `AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '平均等待時間',
  `MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最大等待時間',
  `SUM_LOCK_TIME` bigint(20) unsigned NOT NULL COMMENT '鎖時間總時長',
  `SUM_ERRORS` bigint(20) unsigned NOT NULL COMMENT '錯誤數的總',
  `SUM_WARNINGS` bigint(20) unsigned NOT NULL COMMENT '警告的總數',
  `SUM_ROWS_AFFECTED` bigint(20) unsigned NOT NULL COMMENT '影響的總數目',
  `SUM_ROWS_SENT` bigint(20) unsigned NOT NULL COMMENT '返回總數目',
  `SUM_ROWS_EXAMINED` bigint(20) unsigned NOT NULL COMMENT '總的掃描的數目',
  `SUM_CREATED_TMP_DISK_TABLES` bigint(20) unsigned NOT NULL COMMENT '創建磁盤臨時表的總數目',
  `SUM_CREATED_TMP_TABLES` bigint(20) unsigned NOT NULL COMMENT '創建臨時表的總數目',
  `SUM_SELECT_FULL_JOIN` bigint(20) unsigned NOT NULL COMMENT '第一個表全表掃描的總數目',
  `SUM_SELECT_FULL_RANGE_JOIN` bigint(20) unsigned NOT NULL COMMENT '總的采用range方式掃描的數目',
  `SUM_SELECT_RANGE` bigint(20) unsigned NOT NULL COMMENT '第一個表采用range方式掃描的總數目',
  `SUM_SELECT_RANGE_CHECK` bigint(20) unsigned NOT NULL COMMENT '',
  `SUM_SELECT_SCAN` bigint(20) unsigned NOT NULL COMMENT '第一個表位全表掃描的總數目',
  `SUM_SORT_MERGE_PASSES` bigint(20) unsigned NOT NULL COMMENT '',
  `SUM_SORT_RANGE` bigint(20) unsigned NOT NULL COMMENT '范圍排序總數',
  `SUM_SORT_ROWS` bigint(20) unsigned NOT NULL COMMENT '排序的記錄總數目',
  `SUM_SORT_SCAN` bigint(20) unsigned NOT NULL COMMENT '第一個表排序掃描總數目',
  `SUM_NO_INDEX_USED` bigint(20) unsigned NOT NULL COMMENT '沒有使用索引總數',
  `SUM_NO_GOOD_INDEX_USED` bigint(20) unsigned NOT NULL COMMENT '',
  `FIRST_SEEN` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00' COMMENT '第一次執行時間',
  `LAST_SEEN` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00' COMMENT '最后一次執行時間'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

7,events_statements_summary_global_by_event_name:按照事件的語句進行聚合。表結構同上。

8,events_statements_summary_by_thread_by_event_name:按照線程和事件的語句進行聚合,表結構同上。

9,file_summary_by_instance:按事件類型統計(物理IO維度

10,file_summary_by_event_name:具體文件統計(物理IO維度

9和10一起說明:

統計IO操作:COUNT_STAR,SUM_TIMER_WAIT,MIN_TIMER_WAIT,AVG_TIMER_WAIT,MAX_TIMER_WAIT

統計讀      :COUNT_READ,SUM_TIMER_READ,MIN_TIMER_READ,AVG_TIMER_READ,MAX_TIMER_READ, SUM_NUMBER_OF_BYTES_READ

統計寫      :COUNT_WRITE,SUM_TIMER_WRITE,MIN_TIMER_WRITE,AVG_TIMER_WRITE,MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

統計其他IO事件,比如create,delete,open,close等:COUNT_MISC,SUM_TIMER_MISC,MIN_TIMER_MISC,AVG_TIMER_MISC,MAX_TIMER_MISC

11,table_io_waits_summary_by_table:根據wait/io/table/sql/handler,聚合每個表的I/O操作(邏輯IO緯度

統計IO操作:COUNT_STAR,SUM_TIMER_WAIT,MIN_TIMER_WAIT,AVG_TIMER_WAIT,MAX_TIMER_WAIT 

統計讀      :COUNT_READ,SUM_TIMER_READ,MIN_TIMER_READ,AVG_TIMER_READ,MAX_TIMER_READ

              :COUNT_FETCH,SUM_TIMER_FETCH,MIN_TIMER_FETCH,AVG_TIMER_FETCH, MAX_TIMER_FETCH

統計寫      :COUNT_WRITE,SUM_TIMER_WRITE,MIN_TIMER_WRITE,AVG_TIMER_WRITE,MAX_TIMER_WRITE

INSERT統計,相應的還有DELETE和UPDATE統計:COUNT_INSERT,SUM_TIMER_INSERT,MIN_TIMER_INSERT,AVG_TIMER_INSERT,MAX_TIMER_INSERT

12,table_io_waits_summary_by_index_usage與table_io_waits_summary_by_table類似,按索引維度統計

13,table_lock_waits_summary_by_table:聚合了表鎖等待事件,包括internal lock 和 external lock

internal lock通過SQL層函數thr_lock調用,OPERATION值為:
read normal、read with shared locks、read high priority、read no insert、write allow write、write concurrent insert、write delayed、write low priority、write normal
external lock則通過接口函數handler::external_lock調用存儲引擎層,OPERATION列的值為:read external、write external

14,Connection Summaries表:account、user、host

events_waits_summary_by_account_by_event_name
events_waits_summary_by_user_by_event_name
events_waits_summary_by_host_by_event_name 
events_stages_summary_by_account_by_event_name
events_stages_summary_by_user_by_event_name
events_stages_summary_by_host_by_event_name 
events_statements_summary_by_account_by_event_name
events_statements_summary_by_user_by_event_name
events_statements_summary_by_host_by_event_name

15,socket_summary_by_instance、socket_summary_by_event_name:socket聚合統計表。

:其他相關表

1,performance_timers:系統支持的統計時間單位

2,threads:監視服務端的當前運行的線程

統計應用:

      關於SQL維度的統計信息主要集中在events_statements_summary_by_digest表中,通過將SQL語句抽象出digest,可以統計某類SQL語句在各個維度的統計信息

1,哪個SQL執行最多:

zjy@performance_schema 11:36:22>SELECT SCHEMA_NAME,DIGEST_TEXT,COUNT_STAR,SUM_ROWS_SENT,SUM_ROWS_EXAMINED,FIRST_SEEN,LAST_SEEN FROM events_statements_summary_by_digest ORDER BY COUNT_STAR desc LIMIT 1\G *************************** 1. row *************************** SCHEMA_NAME: dchat
      DIGEST_TEXT: SELECT ...
       COUNT_STAR: 1161210102
    SUM_ROWS_SENT: 1161207842
SUM_ROWS_EXAMINED: 0 FIRST_SEEN: 2016-02-17 00:36:46 LAST_SEEN: 2016-03-07 11:36:29

各個字段的注釋可以看上面的表結構說明:從2月17號到3月7號該SQL執行了1161210102次。

2,哪個SQL平均響應時間最多:

zjy@performance_schema 11:36:28>SELECT SCHEMA_NAME,DIGEST_TEXT,COUNT_STAR,AVG_TIMER_WAIT,SUM_ROWS_SENT,SUM_ROWS_EXAMINED,FIRST_SEEN,LAST_SEEN FROM events_statements_summary_by_digest ORDER BY AVG_TIMER_WAIT desc LIMIT 1\G *************************** 1. row *************************** SCHEMA_NAME: dchat
      DIGEST_TEXT: SELECT ...
       COUNT_STAR: 1 AVG_TIMER_WAIT: 273238183964000
    SUM_ROWS_SENT: 50208
SUM_ROWS_EXAMINED: 5565651 FIRST_SEEN: 2016-02-22 13:27:33 LAST_SEEN: 2016-02-22 13:27:33

各個字段的注釋可以看上面的表結構說明:從2月17號到3月7號該SQL平均響應時間273238183964000皮秒(1000000000000皮秒=1秒)

3,哪個SQL掃描的行數最多:

SUM_ROWS_EXAMINED

4,哪個SQL使用的臨時表最多:

SUM_CREATED_TMP_DISK_TABLES、SUM_CREATED_TMP_TABLES

5,哪個SQL返回的結果集最多:

SUM_ROWS_SENT

6,哪個SQL排序數最多:

SUM_SORT_ROWS

通過上述指標我們可以間接獲得某類SQL的邏輯IO(SUM_ROWS_EXAMINED),CPU消耗(SUM_SORT_ROWS),網絡帶寬(SUM_ROWS_SENT)的對比。

通過file_summary_by_instance表,可以獲得系統運行到現在,哪個文件(表)物理IO最多,這可能意味着這個表經常需要訪問磁盤IO。

7,哪個表、文件邏輯IO最多(熱數據):

zjy@performance_schema 12:16:18>SELECT FILE_NAME,EVENT_NAME,COUNT_READ,SUM_NUMBER_OF_BYTES_READ,COUNT_WRITE,SUM_NUMBER_OF_BYTES_WRITE FROM file_summary_by_instance ORDER BY SUM_NUMBER_OF_BYTES_READ+SUM_NUMBER_OF_BYTES_WRITE DESC LIMIT 2\G *************************** 1. row ***************************
                FILE_NAME: /var/lib/mysql/ibdata1 #文件
               EVENT_NAME: wait/io/file/innodb/innodb_data_file
               COUNT_READ: 544
 SUM_NUMBER_OF_BYTES_READ: 10977280
              COUNT_WRITE: 3700729
SUM_NUMBER_OF_BYTES_WRITE: 1433734217728
*************************** 2. row ***************************
                FILE_NAME: /var/lib/mysql/dchat/fans.ibd #表
               EVENT_NAME: wait/io/file/innodb/innodb_data_file
               COUNT_READ: 9370680
 SUM_NUMBER_OF_BYTES_READ: 153529188352
              COUNT_WRITE: 67576376
SUM_NUMBER_OF_BYTES_WRITE: 1107815432192

8,哪個索引使用最多:

zjy@performance_schema 12:18:42>SELECT OBJECT_NAME, INDEX_NAME, COUNT_FETCH, COUNT_INSERT, COUNT_UPDATE, COUNT_DELETE FROM table_io_waits_summary_by_index_usage ORDER BY SUM_TIMER_WAIT DESC limit 1; +-------------+------------+-------------+--------------+--------------+--------------+
| OBJECT_NAME | INDEX_NAME | COUNT_FETCH | COUNT_INSERT | COUNT_UPDATE | COUNT_DELETE |
+-------------+------------+-------------+--------------+--------------+--------------+
| fans        | PRIMARY    | 29002695158 |            0 |    296373434 |            0 |
+-------------+------------+-------------+--------------+--------------+--------------+
1 row in set (0.29 sec)

通過table_io_waits_summary_by_index_usage表,可以獲得系統運行到現在,哪個表的具體哪個索引(包括主鍵索引,二級索引)使用最多。

9,哪個索引沒有使用過:

zjy@performance_schema 12:23:22>SELECT OBJECT_SCHEMA, OBJECT_NAME, INDEX_NAME FROM table_io_waits_summary_by_index_usage WHERE INDEX_NAME IS NOT NULL AND COUNT_STAR = 0 AND OBJECT_SCHEMA <> 'mysql' ORDER BY OBJECT_SCHEMA,OBJECT_NAME;

10,哪個等待事件消耗的時間最多:

zjy@performance_schema 12:25:22>SELECT EVENT_NAME, COUNT_STAR, SUM_TIMER_WAIT, AVG_TIMER_WAIT FROM events_waits_summary_global_by_event_name WHERE event_name != 'idle' ORDER BY SUM_TIMER_WAIT DESC LIMIT 1;

11,類似profiling功能:

分析具體某條SQL,該SQL在執行各個階段的時間消耗,通過events_statements_xxx表和events_stages_xxx表,就可以達到目的。兩個表通過event_id與nesting_event_id關聯,stages表的nesting_event_id為對應statements表的event_id;針對每個stage可能出現的鎖等待,一個stage會對應一個或多個wait,通過stage_xxx表的event_id字段與waits_xxx表的nesting_event_id進行關聯。如:

比如分析包含count(*)的某條SQL語句,具體如下:

SELECT
EVENT_ID,
sql_text
FROM events_statements_history
WHERE sql_text LIKE '%count(*)%';
+----------+--------------------------------------+
| EVENT_ID | sql_text |
+----------+--------------------------------------+
| 1690 | select count(*) from chuck.test_slow |
+----------+--------------------------------------+
首先得到了語句的event_id為1690,通過查找events_stages_xxx中nesting_event_id為1690的記錄,可以達到目的。

a.查看每個階段的時間消耗:
SELECT
event_id,
EVENT_NAME,
SOURCE,
TIMER_END - TIMER_START
FROM events_stages_history_long
WHERE NESTING_EVENT_ID = 1690;
+----------+--------------------------------+----------------------+-----------------------+
| event_id | EVENT_NAME | SOURCE | TIMER_END-TIMER_START |
+----------+--------------------------------+----------------------+-----------------------+
| 1691 | stage/sql/init | mysqld.cc:990 | 316945000 |
| 1693 | stage/sql/checking permissions | sql_parse.cc:5776 | 26774000 |
| 1695 | stage/sql/Opening tables | sql_base.cc:4970 | 41436934000 |
| 2638 | stage/sql/init | sql_select.cc:1050 | 85757000 |
| 2639 | stage/sql/System lock | lock.cc:303 | 40017000 |
| 2643 | stage/sql/optimizing | sql_optimizer.cc:138 | 38562000 |
| 2644 | stage/sql/statistics | sql_optimizer.cc:362 | 52845000 |
| 2645 | stage/sql/preparing | sql_optimizer.cc:485 | 53196000 |
| 2646 | stage/sql/executing | sql_executor.cc:112 | 3153000 |
| 2647 | stage/sql/Sending data | sql_executor.cc:192 | 7369072089000 |
| 4304138 | stage/sql/end | sql_select.cc:1105 | 19920000 |
| 4304139 | stage/sql/query end | sql_parse.cc:5463 | 44721000 |
| 4304145 | stage/sql/closing tables | sql_parse.cc:5524 | 61723000 |
| 4304152 | stage/sql/freeing items | sql_parse.cc:6838 | 455678000 |
| 4304155 | stage/sql/logging slow query | sql_parse.cc:2258 | 83348000 |
| 4304159 | stage/sql/cleaning up | sql_parse.cc:2163 | 4433000 |
+----------+--------------------------------+----------------------+-----------------------+
通過間接關聯,我們能分析得到SQL語句在每個階段的時間消耗,時間單位以皮秒表示。這里展示的結果很類似profiling功能,有了performance schema,就不再需要profiling這個功能了。另外需要注意的是,由於默認情況下events_stages_history表中只為每個連接記錄了最近10條記錄,為了確保獲取所有記錄,需要訪問events_stages_history_long表

b.查看某個階段的鎖等待情況
針對每個stage可能出現的鎖等待,一個stage會對應一個或多個wait,events_waits_history_long這個表容易爆滿[默認閥值10000]。由於select count(*)需要IO(邏輯IO或者物理IO),所以在stage/sql/Sending data階段會有io等待的統計。通過stage_xxx表的event_id字段與waits_xxx表的nesting_event_id進行關聯。
SELECT
event_id,
event_name,
source,
timer_wait,
object_name,
index_name,
operation,
nesting_event_id
FROM events_waits_history_long
WHERE nesting_event_id = 2647;
+----------+---------------------------+-----------------+------------+-------------+------------+-----------+------------------+
| event_id | event_name | source | timer_wait | object_name | index_name | operation | nesting_event_id |
+----------+---------------------------+-----------------+------------+-------------+------------+-----------+------------------+
| 190607 | wait/io/table/sql/handler | handler.cc:2842 | 1845888 | test_slow | idx_c1 | fetch | 2647 |
| 190608 | wait/io/table/sql/handler | handler.cc:2842 | 1955328 | test_slow | idx_c1 | fetch | 2647 |
| 190609 | wait/io/table/sql/handler | handler.cc:2842 | 1929792 | test_slow | idx_c1 | fetch | 2647 | 
| 190610 | wait/io/table/sql/handler | handler.cc:2842 | 1869600 | test_slow | idx_c1 | fetch | 2647 |
| 190611 | wait/io/table/sql/handler | handler.cc:2842 | 1922496 | test_slow | idx_c1 | fetch | 2647 |
+----------+---------------------------+-----------------+------------+-------------+------------+-----------+------------------+
通過上面的實驗,我們知道了statement,stage,wait的三級結構,通過nesting_event_id進行關聯,它表示某個事件的父event_id。

(2).模擬innodb行鎖等待的例子
會話A執行語句update test_icp set y=y+1 where x=1(x為primary key),不commit;會話B執行同樣的語句update test_icp set y=y+1 where x=1,會話B堵塞,並最終報錯。通過連接連接查詢events_statements_history_long和events_stages_history_long,可以看到在updating階段花了大約60s的時間。這主要因為實例上的innodb_lock_wait_timeout設置為60,等待60s后超時報錯了。

SELECT
statement.EVENT_ID,
stages.event_id,
statement.sql_text,
stages.event_name,
stages.timer_wait
FROM events_statements_history_long statement 
join events_stages_history_long stages 
on statement.event_id=stages.nesting_event_id 
WHERE statement.sql_text = 'update test_icp set y=y+1 where x=1';
+----------+----------+-------------------------------------+--------------------------------+----------------+
| EVENT_ID | event_id | sql_text | event_name | timer_wait |
+----------+----------+-------------------------------------+--------------------------------+----------------+
| 5816 | 5817 | update test_icp set y=y+1 where x=1 | stage/sql/init | 195543000 |
| 5816 | 5819 | update test_icp set y=y+1 where x=1 | stage/sql/checking permissions | 22730000 |
| 5816 | 5821 | update test_icp set y=y+1 where x=1 | stage/sql/Opening tables | 66079000 |
| 5816 | 5827 | update test_icp set y=y+1 where x=1 | stage/sql/init | 89116000 |
| 5816 | 5828 | update test_icp set y=y+1 where x=1 | stage/sql/System lock | 218744000 |
| 5816 | 5832 | update test_icp set y=y+1 where x=1 | stage/sql/updating | 6001362045000 |
| 5816 | 5968 | update test_icp set y=y+1 where x=1 | stage/sql/end | 10435000 |
| 5816 | 5969 | update test_icp set y=y+1 where x=1 | stage/sql/query end | 85979000 |
| 5816 | 5983 | update test_icp set y=y+1 where x=1 | stage/sql/closing tables | 56562000 |
| 5816 | 5990 | update test_icp set y=y+1 where x=1 | stage/sql/freeing items | 83563000 |
| 5816 | 5992 | update test_icp set y=y+1 where x=1 | stage/sql/cleaning up | 4589000 |
+----------+----------+-------------------------------------+--------------------------------+----------------+
查看wait事件:
SELECT
event_id,
event_name,
source,
timer_wait,
object_name,
index_name,
operation,
nesting_event_id
FROM events_waits_history_long
WHERE nesting_event_id = 5832;
*************************** 1. row ***************************
event_id: 5832
event_name: wait/io/table/sql/handler
source: handler.cc:2782
timer_wait: 6005946156624
object_name: test_icp
index_name: PRIMARY
operation: fetch
從結果來看,waits表中記錄了一個fetch等待事件,但並沒有更細的innodb行鎖等待事件統計。

(3).模擬MDL鎖等待的例子
會話A執行一個大查詢select count(*) from test_slow,會話B執行表結構變更alter table test_slow modify c2 varchar(152);通過如下語句可以得到alter語句的執行過程,重點關注“stage/sql/Waiting for table metadata lock”階段。

SELECT
statement.EVENT_ID,
stages.event_id,
statement.sql_text,
stages.event_name as stage_name,
stages.timer_wait as stage_time
FROM events_statements_history_long statement 
left join events_stages_history_long stages 
on statement.event_id=stages.nesting_event_id
WHERE statement.sql_text = 'alter table test_slow modify c2 varchar(152)';
+-----------+-----------+----------------------------------------------+----------------------------------------------------+---------------+
| EVENT_ID | event_id | sql_text | stage_name | stage_time |
+-----------+-----------+----------------------------------------------+----------------------------------------------------+---------------+
| 326526744 | 326526745 | alter table test_slow modify c2 varchar(152) | stage/sql/init | 216662000 |
| 326526744 | 326526747 | alter table test_slow modify c2 varchar(152) | stage/sql/checking permissions | 18183000 |
| 326526744 | 326526748 | alter table test_slow modify c2 varchar(152) | stage/sql/checking permissions | 10294000 |
| 326526744 | 326526750 | alter table test_slow modify c2 varchar(152) | stage/sql/init | 4783000 |
| 326526744 | 326526751 | alter table test_slow modify c2 varchar(152) | stage/sql/Opening tables | 140172000 |
| 326526744 | 326526760 | alter table test_slow modify c2 varchar(152) | stage/sql/setup | 157643000 |
| 326526744 | 326526769 | alter table test_slow modify c2 varchar(152) | stage/sql/creating table | 8723217000 |
| 326526744 | 326526803 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 257332000 |
| 326526744 | 326526832 | alter table test_slow modify c2 varchar(152) | stage/sql/Waiting for table metadata lock | 1000181831000 |
| 326526744 | 326526835 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 33483000 |
| 326526744 | 326526838 | alter table test_slow modify c2 varchar(152) | stage/sql/Waiting for table metadata lock | 1000091810000 |
| 326526744 | 326526841 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 17187000 |
| 326526744 | 326526844 | alter table test_slow modify c2 varchar(152) | stage/sql/Waiting for table metadata lock | 1000126464000 |
| 326526744 | 326526847 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 27472000 |
| 326526744 | 326526850 | alter table test_slow modify c2 varchar(152) | stage/sql/Waiting for table metadata lock | 561996133000 |
| 326526744 | 326526853 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 124876000 |
| 326526744 | 326526877 | alter table test_slow modify c2 varchar(152) | stage/sql/System lock | 30659000 |
| 326526744 | 326526881 | alter table test_slow modify c2 varchar(152) | stage/sql/preparing for alter table | 40246000 |
| 326526744 | 326526889 | alter table test_slow modify c2 varchar(152) | stage/sql/altering table | 36628000 |
| 326526744 | 326528280 | alter table test_slow modify c2 varchar(152) | stage/sql/end | 43824000 |
| 326526744 | 326528281 | alter table test_slow modify c2 varchar(152) | stage/sql/query end | 112557000 |
| 326526744 | 326528299 | alter table test_slow modify c2 varchar(152) | stage/sql/closing tables | 27707000 |
| 326526744 | 326528305 | alter table test_slow modify c2 varchar(152) | stage/sql/freeing items | 201614000 |
| 326526744 | 326528308 | alter table test_slow modify c2 varchar(152) | stage/sql/cleaning up | 3584000 |
+-----------+-----------+----------------------------------------------+----------------------------------------------------+---------------+
從結果可以看到,出現了多次stage/sql/Waiting for table metadata lock階段,並且間隔1s,說明每隔1s鍾會重試判斷。找一個該階段的event_id,通過nesting_event_id關聯,確定到底在等待哪個wait事件。
SELECT
event_id,
event_name,
source,
timer_wait,
object_name,
index_name,
operation,
nesting_event_id
FROM events_waits_history_long
WHERE nesting_event_id = 326526850;
+-----------+---------------------------------------------------+------------------+--------------+-------------+------------+------------+------------------+
| event_id | event_name | source | timer_wait | object_name | index_name | operation | nesting_event_id |
+-----------+---------------------------------------------------+------------------+--------------+-------------+------------+------------+------------------+
| 326526851 | wait/synch/cond/sql/MDL_context::COND_wait_status | mdl.cc:1327 | 562417991328 | NULL | NULL | timed_wait | 326526850 |
| 326526852 | wait/synch/mutex/mysys/my_thread_var::mutex | sql_class.h:3481 | 733248 | NULL | NULL | lock | 326526850 |
+-----------+---------------------------------------------------+------------------+--------------+-------------+------------+------------+------------------+
通過結果可以知道,產生阻塞的是條件變量MDL_context::COND_wait_status,並且顯示了代碼的位置。
View Code

總結:

本文通過對Performance Schema數據庫的介紹,主要用於收集數據庫服務器性能參數:①提供進程等待的詳細信息,包括鎖、互斥變量、文件信息;②保存歷史的事件匯總信息,為提供MySQL服務器性能做出詳細的判斷;③對於新增和刪除監控事件點都非常容易,並可以改變mysql服務器的監控周期,例如(CYCLE、MICROSECOND)。通過該庫得到數據庫運行的統計信息,更好分析定位問題和完善監控信息。類似的監控還有:

打開標准的innodb監控:
CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;
打開innodb的鎖監控:
CREATE TABLE innodb_lock_monitor (a INT) ENGINE=INNODB;
打開innodb表空間監控:
CREATE TABLE innodb_tablespace_monitor (a INT) ENGINE=INNODB;
打開innodb表監控:
CREATE TABLE innodb_table_monitor (a INT) ENGINE=INNODB;

參考文章:

https://dev.mysql.com/doc/refman/5.6/en/performance-schema.html

http://www.cnblogs.com/cchust/p/5022148.html

http://www.cnblogs.com/cchust/p/5057498.html

http://www.cnblogs.com/cchust/p/5061131.html

http://mysqllover.com/?p=522

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM