《深入理解Spark:核心思想與源碼分析》一書前言的內容請看鏈接《深入理解SPARK:核心思想與源碼分析》一書正式出版上市
《深入理解Spark:核心思想與源碼分析》一書第一章的內容請看鏈接《第1章 環境准備》
《深入理解Spark:核心思想與源碼分析》一書第二章的內容請看鏈接《第2章 SPARK設計理念與基本架構》
由於本書的第3章內容較多,所以打算分別開辟四篇隨筆分別展現。
《深入理解Spark:核心思想與源碼分析》一書第三章第一部分的內容請看鏈接《深入理解Spark:核心思想與源碼分析》——SparkContext的初始化(伯篇)》
本文展現第3章第二部分的內容:
3.4 SparkUI詳解
任何系統都需要提供監控功能,用瀏覽器能訪問具有樣式及布局,並提供豐富監控數據的頁面無疑是一種簡單、高效的方式。SparkUI就是這樣的服務,它的構成如圖3-1所示。
在大型分布式系統中,采用事件監聽機制是最常見的。為什么要使用事件監聽機制?假如SparkUI采用Scala的函數調用方式,那么隨着整個集群規模的增加,對函數的調用會越來越多,最終會受到Driver所在JVM的線程數量限制而影響監控數據的更新,甚至出現監控數據無法及時顯示給用戶的情況。由於函數調用多數情況下是同步調用,這就導致線程被阻塞,在分布式環境中,還可能因為網絡問題,導致線程被長時間占用。將函數調用更換為發送事件,事件的處理是異步的,當前線程可以繼續執行后續邏輯,線程池中的線程還可以被重用,這樣整個系統的並發度會大大增加。發送的事件會存入緩存,由定時調度器取出后,分配給監聽此事件的監聽器對監控數據進行更新。
圖3-1 SparkUI架構
我們先將圖3-1中的各個組件作簡單介紹:DAGScheduler是主要的產生各類SparkListenerEvent的源頭,它將各種SparkListenerEvent發送到listenerBus的事件隊列中,listenerBus通過定時器將SparkListenerEvent事件匹配到具體的SparkListener,改變SparkListener中的統計監控數據,最終由SparkUI的界面展示。從圖3-1中還可以看到Spark里定義了很多監聽器SparkListener的實現,包括JobProgressListener、EnviromentListener、StorageListener、ExecutorsListener幾種,它們的類繼承體系如圖3-2所示。
圖3-2 SparkListener繼承體系
3.4.1 listenerBus詳解
listenerBus的類型是LiveListenerBus,LiveListenerBus實現了監聽器模型,通過監聽事件觸發對各種監聽器監聽狀態信息的修改,達到UI界面的數據刷新效果。LiveListenerBus由以下部分組成:
q 事件阻塞隊列:類型為LinkedBlockingQueue[SparkListenerEvent],固定大小是10000;
q 監聽器數組:類型為ArrayBuffer[SparkListener],存放各類監聽器SparkListener。SparkListener是;
q 事件匹配監聽器的線程:此Thread不斷拉取LinkedBlockingQueue中的事情,遍歷監聽器,調用監聽器的方法。任何事件都會在LinkedBlockingQueue中存在一段時間,然后Thread處理了此事件后,會將其清除。因此使用listener bus這個名字再合適不過了,到站就下車。listenerBus的實現,見代碼清單3-15。
代碼清單3-15 LiveListenerBus的事件處理實現
private val EVENT_QUEUE_CAPACITY = 10000 private val eventQueue = new LinkedBlockingQueue[SparkListenerEvent](EVENT_QUEUE_CAPACITY) private var queueFullErrorMessageLogged = false private var started = false // A counter that represents the number of events produced and consumed in the queue private val eventLock = new Semaphore(0) private val listenerThread = new Thread("SparkListenerBus") { setDaemon(true) override def run(): Unit = Utils.logUncaughtExceptions { while (true) { eventLock.acquire() // Atomically remove and process this event LiveListenerBus.this.synchronized { val event = eventQueue.poll if (event == SparkListenerShutdown) { // Get out of the while loop and shutdown the daemon thread return } Option(event).foreach(postToAll) } } } } def start() { if (started) { throw new IllegalStateException("Listener bus already started!") } listenerThread.start() started = true } def post(event: SparkListenerEvent) { val eventAdded = eventQueue.offer(event) if (eventAdded) { eventLock.release() } else { logQueueFullErrorMessage() } } def listenerThreadIsAlive: Boolean = synchronized { listenerThread.isAlive } def queueIsEmpty: Boolean = synchronized { eventQueue.isEmpty } def stop() { if (!started) { throw new IllegalStateException("Attempted to stop a listener bus that has not yet started!") } post(SparkListenerShutdown) listenerThread.join() }
LiveListenerBus中調用的postToAll方法實際定義在父類SparkListenerBus中,如代碼清單3-16所示。
代碼清單3-16 SparkListenerBus中的監聽器調用
protected val sparkListeners = new ArrayBuffer[SparkListener] with mutable.SynchronizedBuffer[SparkListener] def addListener(listener: SparkListener) { sparkListeners += listener } def postToAll(event: SparkListenerEvent) { event match { case stageSubmitted: SparkListenerStageSubmitted => foreachListener(_.onStageSubmitted(stageSubmitted)) case stageCompleted: SparkListenerStageCompleted => foreachListener(_.onStageCompleted(stageCompleted)) case jobStart: SparkListenerJobStart => foreachListener(_.onJobStart(jobStart)) case jobEnd: SparkListenerJobEnd => foreachListener(_.onJobEnd(jobEnd)) case taskStart: SparkListenerTaskStart => foreachListener(_.onTaskStart(taskStart)) case taskGettingResult: SparkListenerTaskGettingResult => foreachListener(_.onTaskGettingResult(taskGettingResult)) case taskEnd: SparkListenerTaskEnd => foreachListener(_.onTaskEnd(taskEnd)) case environmentUpdate: SparkListenerEnvironmentUpdate => foreachListener(_.onEnvironmentUpdate(environmentUpdate)) case blockManagerAdded: SparkListenerBlockManagerAdded => foreachListener(_.onBlockManagerAdded(blockManagerAdded)) case blockManagerRemoved: SparkListenerBlockManagerRemoved => foreachListener(_.onBlockManagerRemoved(blockManagerRemoved)) case unpersistRDD: SparkListenerUnpersistRDD => foreachListener(_.onUnpersistRDD(unpersistRDD)) case applicationStart: SparkListenerApplicationStart => foreachListener(_.onApplicationStart(applicationStart)) case applicationEnd: SparkListenerApplicationEnd => foreachListener(_.onApplicationEnd(applicationEnd)) case metricsUpdate: SparkListenerExecutorMetricsUpdate => foreachListener(_.onExecutorMetricsUpdate(metricsUpdate)) case SparkListenerShutdown => } } private def foreachListener(f: SparkListener => Unit): Unit = { sparkListeners.foreach { listener => try { f(listener) } catch { case e: Exception => logError(s"Listener ${Utils.getFormattedClassName(listener)} threw an exception", e) } } }
3.4.2 構造JobProgressListener
我們以JobProgressListener為例來講解SparkListener。JobProgressListener是SparkContext中一個重要的組成部分,通過監聽listenerBus中的事件更新任務進度。SparkStatusTracker和SparkUI實際上也是通過JobProgressListener來實現任務狀態跟蹤的。創建JobProgressListener的代碼如下。
private[spark] val jobProgressListener = new JobProgressListener(conf) listenerBus.addListener(jobProgressListener) val statusTracker = new SparkStatusTracker(this)
JobProgressListener的作用是通過HashMap、ListBuffer等數據結構存儲JobId及對應的JobUIData信息,並按照激活、完成、失敗等job狀態統計。對於StageId、StageInfo等信息按照激活、完成、忽略、失敗等stage狀態統計。並且存儲StageId與JobId的一對多關系。這些統計信息最終會被JobPage和StagePage等頁面訪問和渲染。JobProgressListener的數據結構見代碼清單3-17。
代碼清單3-17 JobProgressListener維護的信息
class JobProgressListener(conf: SparkConf) extends SparkListener with Logging { import JobProgressListener._ type JobId = Int type StageId = Int type StageAttemptId = Int type PoolName = String type ExecutorId = String // Jobs: val activeJobs = new HashMap[JobId, JobUIData] val completedJobs = ListBuffer[JobUIData]() val failedJobs = ListBuffer[JobUIData]() val jobIdToData = new HashMap[JobId, JobUIData] // Stages: val activeStages = new HashMap[StageId, StageInfo] val completedStages = ListBuffer[StageInfo]() val skippedStages = ListBuffer[StageInfo]() val failedStages = ListBuffer[StageInfo]() val stageIdToData = new HashMap[(StageId, StageAttemptId), StageUIData] val stageIdToInfo = new HashMap[StageId, StageInfo] val stageIdToActiveJobIds = new HashMap[StageId, HashSet[JobId]] val poolToActiveStages = HashMap[PoolName, HashMap[StageId, StageInfo]]() var numCompletedStages = 0 // 總共完成的Stage數量 var numFailedStages = 0 / 總共失敗的Stage數量 // Misc: val executorIdToBlockManagerId = HashMap[ExecutorId, BlockManagerId]() def blockManagerIds = executorIdToBlockManagerId.values.toSeq var schedulingMode: Option[SchedulingMode] = None // number of non-active jobs and stages (there is no limit for active jobs and stages): val retainedStages = conf.getInt("spark.ui.retainedStages", DEFAULT_RETAINED_STAGES) val retainedJobs = conf.getInt("spark.ui.retainedJobs", DEFAULT_RETAINED_JOBS)
JobProgressListener 實現了onJobStart、onJobEnd、onStageCompleted、onStageSubmitted、onTaskStart、onTaskEnd等方法,這些方法正是在listenerBus的驅動下,改變JobProgressListener中的各種Job、Stage相關的數據。
3.4.3 SparkUI的創建與初始化
創建SparkUI的實現,見代碼清單3-18。
代碼清單3-18 SparkUI的聲明
private[spark] val ui: Option[SparkUI] = if (conf.getBoolean("spark.ui.enabled", true)) { Some(SparkUI.createLiveUI(this, conf, listenerBus, jobProgressListener, env.securityManager,appName)) } else { None } ui.foreach(_.bind())
可以看到如果不需要提供SparkUI服務,可以將屬性spark.ui.enabled修改為false。其中createLiveUI實際是調用了create方法,見代碼清單3-19。
代碼清單3-19 SparkUI的創建
def createLiveUI( sc: SparkContext, conf: SparkConf, listenerBus: SparkListenerBus, jobProgressListener: JobProgressListener, securityManager: SecurityManager, appName: String): SparkUI = { create(Some(sc), conf, listenerBus, securityManager, appName, jobProgressListener = Some(jobProgressListener)) }
在create方法里,除了JobProgressListener是外部傳入的之外,又增加了一些SparkListener。例如,用於對JVM參數、Spark屬性、Java系統屬性、classpath等進行監控的EnvironmentListener;用於維護executor的存儲狀態的StorageStatusListener;用於准備將executor的信息展示在ExecutorsTab的ExecutorsListener;用於准備將executor相關存儲信息展示在BlockManagerUI的StorageListener等。最后創建SparkUI,參見代碼清單3-20。
代碼清單3-20 create方法的實現
private def create( sc: Option[SparkContext], conf: SparkConf, listenerBus: SparkListenerBus, securityManager: SecurityManager, appName: String, basePath: String = "", jobProgressListener: Option[JobProgressListener] = None): SparkUI = { val _jobProgressListener: JobProgressListener = jobProgressListener.getOrElse { val listener = new JobProgressListener(conf) listenerBus.addListener(listener) listener } val environmentListener = new EnvironmentListener val storageStatusListener = new StorageStatusListener val executorsListener = new ExecutorsListener(storageStatusListener) val storageListener = new StorageListener(storageStatusListener) listenerBus.addListener(environmentListener) listenerBus.addListener(storageStatusListener) listenerBus.addListener(executorsListener) listenerBus.addListener(storageListener) new SparkUI(sc, conf, securityManager, environmentListener, storageStatusListener, executorsListener, _jobProgressListener, storageListener, appName, basePath) }
SparkUI服務默認是可以被殺掉的,通過修改屬性spark.ui.killEnabled為false可以保證不被殺死。initialize方法,會組織前端頁面各個Tab和Page的展示及布局,參見代碼清單3-21。
代碼清單3-21 SparkUI的初始化
private[spark] class SparkUI private ( val sc: Option[SparkContext], val conf: SparkConf, val securityManager: SecurityManager, val environmentListener: EnvironmentListener, val storageStatusListener: StorageStatusListener, val executorsListener: ExecutorsListener, val jobProgressListener: JobProgressListener, val storageListener: StorageListener, var appName: String, val basePath: String) extends WebUI(securityManager, SparkUI.getUIPort(conf), conf, basePath, "SparkUI") with Logging { val killEnabled = sc.map(_.conf.getBoolean("spark.ui.killEnabled", true)).getOrElse(false) /** Initialize all components of the server. */ def initialize() { attachTab(new JobsTab(this)) val stagesTab = new StagesTab(this) attachTab(stagesTab) attachTab(new StorageTab(this)) attachTab(new EnvironmentTab(this)) attachTab(new ExecutorsTab(this)) attachHandler(createStaticHandler(SparkUI.STATIC_RESOURCE_DIR, "/static")) attachHandler(createRedirectHandler("/", "/jobs", basePath = basePath)) attachHandler( createRedirectHandler("/stages/stage/kill", "/stages", stagesTab.handleKillRequest)) } initialize()
3.4.4 SparkUI的頁面布局及展示
SparkUI究竟是如何實現頁面布局及展示的?JobsTab展示所有Job的進度、狀態信息,這里我們以它為例來說明。JobsTab會復用SparkUI的killEnabled、SparkContext、jobProgressListener,包括AllJobsPage和JobPage兩個頁面,見代碼清單3-22。
代碼清單3-22 JobsTab的實現
private[ui] class JobsTab(parent: SparkUI) extends SparkUITab(parent, "jobs") { val sc = parent.sc val killEnabled = parent.killEnabled def isFairScheduler = listener.schedulingMode.exists(_ == SchedulingMode.FAIR) val listener = parent.jobProgressListener attachPage(new AllJobsPage(this)) attachPage(new JobPage(this)) }
AllJobsPage由render方法渲染,利用jobProgressListener中的統計監控數據生成激活、完成、失敗等狀態的Job摘要信息,並調用jobsTable方法生成表格等html元素,最終使用UIUtils的headerSparkPage封裝好css、js、header及頁面布局等,見代碼清單3-23。
代碼清單3-23 AllJobsPage的實現
def render(request: HttpServletRequest): Seq[Node] = { listener.synchronized { val activeJobs = listener.activeJobs.values.toSeq val completedJobs = listener.completedJobs.reverse.toSeq val failedJobs = listener.failedJobs.reverse.toSeq val now = System.currentTimeMillis val activeJobsTable = jobsTable(activeJobs.sortBy(_.startTime.getOrElse(-1L)).reverse) val completedJobsTable = jobsTable(completedJobs.sortBy(_.endTime.getOrElse(-1L)).reverse) val failedJobsTable = jobsTable(failedJobs.sortBy(_.endTime.getOrElse(-1L)).reverse) val summary: NodeSeq = <div> <ul class="unstyled"> {if (startTime.isDefined) { // Total duration is not meaningful unless the UI is live <li> <strong>Total Duration: </strong> {UIUtils.formatDuration(now - startTime.get)} </li> }} <li> <strong>Scheduling Mode: </strong> {listener.schedulingMode.map(_.toString).getOrElse("Unknown")} </li> <li> <a href="#active"><strong>Active Jobs:</strong></a> {activeJobs.size} </li> <li> <a href="#completed"><strong>Completed Jobs:</strong></a> {completedJobs.size} </li> <li> <a href="#failed"><strong>Failed Jobs:</strong></a> {failedJobs.size} </li> </ul> </div>
jobsTable用來生成表格數據,見代碼清單3-24。
代碼清單3-24 jobsTable處理表格的實現
private def jobsTable(jobs: Seq[JobUIData]): Seq[Node] = { val someJobHasJobGroup = jobs.exists(_.jobGroup.isDefined) val columns: Seq[Node] = { <th>{if (someJobHasJobGroup) "Job Id (Job Group)" else "Job Id"}</th> <th>Description</th> <th>Submitted</th> <th>Duration</th> <th class="sorttable_nosort">Stages: Succeeded/Total</th> <th class="sorttable_nosort">Tasks (for all stages): Succeeded/Total</th> } <table class="table table-bordered table-striped table-condensed sortable"> <thead>{columns}</thead> <tbody> {jobs.map(makeRow)} </tbody> </table> }
表格中每行數據又是通過makeRow方法渲染的,參見代碼清單3-25。
代碼清單3-25 生成表格中的行
def makeRow(job: JobUIData): Seq[Node] = { val lastStageInfo = Option(job.stageIds) .filter(_.nonEmpty) .flatMap { ids => listener.stageIdToInfo.get(ids.max) } val lastStageData = lastStageInfo.flatMap { s => listener.stageIdToData.get((s.stageId, s.attemptId)) } val isComplete = job.status == JobExecutionStatus.SUCCEEDED val lastStageName = lastStageInfo.map(_.name).getOrElse("(Unknown Stage Name)") val lastStageDescription = lastStageData.flatMap(_.description).getOrElse("") val duration: Option[Long] = { job.startTime.map { start => val end = job.endTime.getOrElse(System.currentTimeMillis()) end - start } } val formattedDuration = duration.map(d => UIUtils.formatDuration(d)).getOrElse("Unknown") val formattedSubmissionTime = job.startTime.map(UIUtils.formatDate).getOrElse("Unknown") val detailUrl = "%s/jobs/job?id=%s".format(UIUtils.prependBaseUri(parent.basePath), job.jobId) <tr> <td sorttable_customkey={job.jobId.toString}> {job.jobId} {job.jobGroup.map(id => s"($id)").getOrElse("")} </td> <td> <div><em>{lastStageDescription}</em></div> <a href={detailUrl}>{lastStageName}</a> </td> <td sorttable_customkey={job.startTime.getOrElse(-1).toString}> {formattedSubmissionTime} </td> <td sorttable_customkey={duration.getOrElse(-1).toString}>{formattedDuration}</td> <td class="stage-progress-cell"> {job.completedStageIndices.size}/{job.stageIds.size - job.numSkippedStages} {if (job.numFailedStages > 0) s"(${job.numFailedStages} failed)"} {if (job.numSkippedStages > 0) s"(${job.numSkippedStages} skipped)"} </td> <td class="progress-cell"> {UIUtils.makeProgressBar(started = job.numActiveTasks, completed = job.numCompletedTasks, failed = job.numFailedTasks, skipped = job.numSkippedTasks, total = job.numTasks - job.numSkippedTasks)} </td> </tr> }
代碼清單3-22中的attachPage方法存在於JobsTab的父類WebUITab中,WebUITab維護有ArrayBuffer[WebUIPage]的數據結構,AllJobsPage和JobPage將被放入此ArrayBuffer中,參見代碼清單3-26。
代碼清單3-26 WebUITab的實現
private[spark] abstract class WebUITab(parent: WebUI, val prefix: String) { val pages = ArrayBuffer[WebUIPage]() val name = prefix.capitalize /** Attach a page to this tab. This prepends the page's prefix with the tab's own prefix. */ def attachPage(page: WebUIPage) { page.prefix = (prefix + "/" + page.prefix).stripSuffix("/") pages += page } /** Get a list of header tabs from the parent UI. */ def headerTabs: Seq[WebUITab] = parent.getTabs def basePath: String = parent.getBasePath }
JobsTab創建之后,將被attachTab方法加入SparkUI的ArrayBuffer[WebUITab]中,並且通過attachPage方法,給每一個page生成org.eclipse.jetty.servlet.ServletContextHandler,最后調用attachHandler方法將ServletContextHandler綁定到SparkUI,即加入到handlers :ArrayBuffer[ServletContextHandler]和樣例類ServerInfo樣例類的rootHandler(ContextHandlerCollection)中。SparkUI繼承自WebUI,attachTab方法在WebUI中實現,參見代碼清單3-27。
代碼清單3-27 WebUI的實現
private[spark] abstract class WebUI( securityManager: SecurityManager, port: Int, conf: SparkConf, basePath: String = "", name: String = "") extends Logging { protected val tabs = ArrayBuffer[WebUITab]() protected val handlers = ArrayBuffer[ServletContextHandler]() protected var serverInfo: Option[ServerInfo] = None protected val localHostName = Utils.localHostName() protected val publicHostName = Option(System.getenv("SPARK_PUBLIC_DNS")).getOrElse(localHostName) private val className = Utils.getFormattedClassName(this) def getBasePath: String = basePath def getTabs: Seq[WebUITab] = tabs.toSeq def getHandlers: Seq[ServletContextHandler] = handlers.toSeq def getSecurityManager: SecurityManager = securityManager /** Attach a tab to this UI, along with all of its attached pages. */ def attachTab(tab: WebUITab) { tab.pages.foreach(attachPage) tabs += tab } /** Attach a page to this UI. */ def attachPage(page: WebUIPage) { val pagePath = "/" + page.prefix attachHandler(createServletHandler(pagePath, (request: HttpServletRequest) => page.render(request), securityManager, basePath)) attachHandler(createServletHandler(pagePath.stripSuffix("/") + "/json", (request: HttpServletRequest) => page.renderJson(request), securityManager, basePath)) } /** Attach a handler to this UI. */ def attachHandler(handler: ServletContextHandler) { handlers += handler serverInfo.foreach { info => info.rootHandler.addHandler(handler) if (!handler.isStarted) { handler.start() } } }
由於代碼清單3-27所在的類中使用import org.apache.spark.ui.JettyUtils._導入了JettyUtils的靜態方法,所以createServletHandler方法實際是JettyUtils 的靜態方法createServletHandler。createServletHandler實際創建了javax.servlet.http.HttpServlet的匿名內部類實例,此實例實際使用(request: HttpServletRequest) => page.render(request)這個函數參數來處理請求,進而渲染頁面呈現給用戶。有關createServletHandler的實現,及Jetty的相關信息,請參閱附錄C。
3.4.5 SparkUI啟動
parkUI創建好后,需要調用父類WebUI的bind方法,綁定服務和端口,bind方法中主要的代碼實現如下。
serverInfo = Some(startJettyServer("0.0.0.0", port, handlers, conf, name))
JettyUtils的靜態方法startJettyServer的實現請參閱附錄C。最終啟動了Jetty提供的服務,默認端口是4040。
3.5 Hadoop相關配置及Executor環境變量
3.5.1 Hadoop相關配置信息
默認情況下,Spark使用HDFS作為分布式文件系統,所以需要獲取Hadoop相關配置信息的代碼如下。
val hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(conf)
獲取的配置信息包括:
q Amazon S3文件系統AccessKeyId和SecretAccessKey加載到Hadoop的Configuration;
q 將SparkConf中所有spark.hadoop.開頭的屬性都復制到Hadoop的Configuration;
q 將SparkConf的屬性spark.buffer.size復制為Hadoop的Configuration的配置io.file.buffer.size。
注意:如果指定了SPARK_YARN_MODE屬性,則會使用YarnSparkHadoopUtil,否則默認為SparkHadoopUtil。
3.5.2 Executor環境變量
對Executor的環境變量的處理,參見代碼清單3-28。executorEnvs 包含的環境變量將會在7.2.2節中介紹的注冊應用的過程中發送給Master,Master給Worker發送調度后,Worker最終使用executorEnvs提供的信息啟動Executor。可以通過配置spark.executor.memory指定Executor占用的內存大小,也可以配置系統變量SPARK_EXECUTOR_MEMORY或者SPARK_MEM對其大小進行設置。
代碼清單3-28 Executor 環境變量的處理
private[spark] val executorMemory = conf.getOption("spark.executor.memory") .orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY"))) .orElse(Option(System.getenv("SPARK_MEM")).map(warnSparkMem)) .map(Utils.memoryStringToMb) .getOrElse(512) // Environment variables to pass to our executors. private[spark] val executorEnvs = HashMap[String, String]() for { (envKey, propKey) <- Seq(("SPARK_TESTING", "spark.testing")) value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} { executorEnvs(envKey) = value } Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v => executorEnvs("SPARK_PREPEND_CLASSES") = v } // The Mesos scheduler backend relies on this environment variable to set executor memory. executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m" executorEnvs ++= conf.getExecutorEnv // Set SPARK_USER for user who is running SparkContext. val sparkUser = Option { Option(System.getenv("SPARK_USER")).getOrElse(System.getProperty("user.name")) }.getOrElse { SparkContext.SPARK_UNKNOWN_USER } executorEnvs("SPARK_USER") = sparkUser
3.6 創建任務調度器TaskScheduler
TaskScheduler也是SparkContext的重要組成部分,負責任務的提交,並且請求集群管理器對任務調度。TaskScheduler也可以看做任務調度的客戶端。創建TaskScheduler的代碼如下。
private[spark] var (schedulerBackend, taskScheduler) = SparkContext.createTaskScheduler(this, master)
createTaskScheduler方法會根據master的配置匹配部署模式,創建TaskSchedulerImpl,並生成不同的SchedulerBackend。本章為了使讀者更容易理解Spark的初始化流程,故以local模式為例,其余模式將在第6章詳解。master匹配local模式的代碼如下。
master match { case "local" => val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true) val backend = new LocalBackend(scheduler, 1) scheduler.initialize(backend) (backend, scheduler)
3.6.1 創建TaskSchedulerImpl
TaskSchedulerImpl的構造過程如下:
1) 從SparkConf中讀取配置信息,包括每個任務分配的CPU數、調度模式(調度模式有FAIR和FIFO兩種,默認為FIFO,可以修改屬性spark.scheduler.mode來改變)等。
2) 創建TaskResultGetter,它的作用是通過線程池(Executors.newFixedThreadPool創建的,默認4個線程,線程名字以task-result-getter開頭,線程工廠默認是Executors.defaultThreadFactory),對slave發送的task的執行結果進行處理。
TaskSchedulerImpl的主要組成,見代碼清單3-29。
代碼清單3-29 TaskSchedulerImpl的實現
var dagScheduler: DAGScheduler = null var backend: SchedulerBackend = null val mapOutputTracker = SparkEnv.get.mapOutputTracker var schedulableBuilder: SchedulableBuilder = null var rootPool: Pool = null // default scheduler is FIFO private val schedulingModeConf = conf.get("spark.scheduler.mode", "FIFO") val schedulingMode: SchedulingMode = try { SchedulingMode.withName(schedulingModeConf.toUpperCase) } catch { case e: java.util.NoSuchElementException => throw new SparkException(s"Unrecognized spark.scheduler.mode: $schedulingModeConf") } // This is a var so that we can reset it for testing purposes. private[spark] var taskResultGetter = new TaskResultGetter(sc.env, this)
TaskSchedulerImpl的調度模式有FAIR和FIFO兩種。任務的最終調度實際都是落實到接口SchedulerBackend的具體實現上的。為方便分析,我們先來看看local模式中SchedulerBackend的實現LocalBackend。LocalBackend依賴於LocalActor與ActorSystem進行消息通信。LocalBackend參見代碼清單3-30。
代碼清單3-30 LocalBackend的實現
private[spark] class LocalBackend(scheduler: TaskSchedulerImpl, val totalCores: Int) extends SchedulerBackend with ExecutorBackend { private val appId = "local-" + System.currentTimeMillis var localActor: ActorRef = null override def start() { localActor = SparkEnv.get.actorSystem.actorOf( Props(new LocalActor(scheduler, this, totalCores)), "LocalBackendActor") } override def stop() { localActor ! StopExecutor } override def reviveOffers() { localActor ! ReviveOffers } override def defaultParallelism() = scheduler.conf.getInt("spark.default.parallelism", totalCores) override def killTask(taskId: Long, executorId: String, interruptThread: Boolean) { localActor ! KillTask(taskId, interruptThread) } override def statusUpdate(taskId: Long, state: TaskState, serializedData: ByteBuffer) { localActor ! StatusUpdate(taskId, state, serializedData) } override def applicationId(): String = appId }
3.6.2 TaskSchedulerImpl的初始化
創建完TaskSchedulerImpl和LocalBackend后,對TaskSchedulerImpl調用方法initialize進行初始化。初始化過程如下:
1) 使TaskSchedulerImpl持有LocalBackend的引用。
2) 創建Pool,Pool中緩存了調度隊列、調度算法及TaskSetManager集合等信息。
3) 創建FIFOSchedulableBuilder,FIFOSchedulableBuilder用來操作Pool中的調度隊列。
Initialize方法的實現見代碼清單3-31。
代碼清單3-31 TaskSchedulerImpl的初始化
def initialize(backend: SchedulerBackend) { this.backend = backend rootPool = new Pool("", schedulingMode, 0, 0) schedulableBuilder = { schedulingMode match { case SchedulingMode.FIFO => new FIFOSchedulableBuilder(rootPool) case SchedulingMode.FAIR => new FairSchedulableBuilder(rootPool, conf) } } schedulableBuilder.buildPools() }
3.7 創建和啟動DAGScheduler
DAGScheduler主要用於在任務正式交給TaskSchedulerImpl提交之前做一些准備工作,包括:創建Job,將DAG中的RDD划分到不同的Stage、提交Stage,等等。創建DAGScheduler的代碼如下。
@volatile private[spark] var dagScheduler: DAGScheduler = _ dagScheduler = new DAGScheduler(this)
DAGScheduler的數據結構主要維護jobId和stageId的關系、Stage、ActiveJob,以及緩存的RDD的partitions的位置信息,見代碼清單3-32。
代碼清單3-32 DAGScheduler維護的數據結構
private[scheduler] val nextJobId = new AtomicInteger(0) private[scheduler] def numTotalJobs: Int = nextJobId.get() private val nextStageId = new AtomicInteger(0) private[scheduler] val jobIdToStageIds = new HashMap[Int, HashSet[Int]] private[scheduler] val stageIdToStage = new HashMap[Int, Stage] private[scheduler] val shuffleToMapStage = new HashMap[Int, Stage] private[scheduler] val jobIdToActiveJob = new HashMap[Int, ActiveJob] // Stages we need to run whose parents aren't done private[scheduler] val waitingStages = new HashSet[Stage] // Stages we are running right now private[scheduler] val runningStages = new HashSet[Stage] // Stages that must be resubmitted due to fetch failures private[scheduler] val failedStages = new HashSet[Stage] private[scheduler] val activeJobs = new HashSet[ActiveJob] // Contains the locations that each RDD's partitions are cached on private val cacheLocs = new HashMap[Int, Array[Seq[TaskLocation]]] private val failedEpoch = new HashMap[String, Long] private val dagSchedulerActorSupervisor = env.actorSystem.actorOf(Props(new DAGSchedulerActorSupervisor(this))) private val closureSerializer = SparkEnv.get.closureSerializer.newInstance()
在構造DAGScheduler的時候會調用initializeEventProcessActor方法創建DAGSchedulerEventProcessActor,見代碼清單3-33。
代碼清單3-33 DAGSchedulerEventProcessActor的初始化
private[scheduler] var eventProcessActor: ActorRef = _ private def initializeEventProcessActor() { // blocking the thread until supervisor is started, which ensures eventProcessActor is // not null before any job is submitted implicit val timeout = Timeout(30 seconds) val initEventActorReply = dagSchedulerActorSupervisor ? Props(new DAGSchedulerEventProcessActor(this)) eventProcessActor = Await.result(initEventActorReply, timeout.duration). asInstanceOf[ActorRef] } initializeEventProcessActor()
這里的DAGSchedulerActorSupervisor主要作為DAGSchedulerEventProcessActor的監管者,負責生成DAGSchedulerEventProcessActor。從代碼清單3-34可以看出,DAGSchedulerActorSupervisor對於DAGSchedulerEventProcessActor采用了Akka的一對一監管策略。DAGSchedulerActorSupervisor一旦生成DAGSchedulerEventProcessActor,並注冊到ActorSystem,ActorSystem就會調用DAGSchedulerEventProcessActor的preStart,taskScheduler於是就持有了dagScheduler,見代碼清單3-35。從代碼清單3-35我們還看到DAGSchedulerEventProcessActor所能處理的消息類型,比如handleJobSubmitted、handleBeginEvent、handleTaskCompletion等。DAGSchedulerEventProcessActor接受這些消息后會有不同的處理動作,在本章,讀者只需要理解到這里即可,后面章節用到時會詳細分析。
代碼清單3-34 DAGSchedulerActorSupervisor的監管策略
private[scheduler] class DAGSchedulerActorSupervisor(dagScheduler: DAGScheduler) extends Actor with Logging { override val supervisorStrategy = OneForOneStrategy() { case x: Exception => logError("eventProcesserActor failed; shutting down SparkContext", x) try { dagScheduler.doCancelAllJobs() } catch { case t: Throwable => logError("DAGScheduler failed to cancel all jobs.", t) } dagScheduler.sc.stop() Stop } def receive = { case p: Props => sender ! context.actorOf(p) case _ => logWarning("received unknown message in DAGSchedulerActorSupervisor") } }
代碼清單3-35 DAGSchedulerEventProcessActor的實現
private[scheduler] class DAGSchedulerEventProcessActor(dagScheduler: DAGScheduler) extends Actor with Logging { override def preStart() { dagScheduler.taskScheduler.setDAGScheduler(dagScheduler) } /** * The main event loop of the DAG scheduler. */ def receive = { case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) => dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) case StageCancelled(stageId) => dagScheduler.handleStageCancellation(stageId) case JobCancelled(jobId) => dagScheduler.handleJobCancellation(jobId) case JobGroupCancelled(groupId) => dagScheduler.handleJobGroupCancelled(groupId) case AllJobsCancelled => dagScheduler.doCancelAllJobs() case ExecutorAdded(execId, host) => dagScheduler.handleExecutorAdded(execId, host) case ExecutorLost(execId) => dagScheduler.handleExecutorLost(execId, fetchFailed = false) case BeginEvent(task, taskInfo) => dagScheduler.handleBeginEvent(task, taskInfo) case GettingResultEvent(taskInfo) => dagScheduler.handleGetTaskResult(taskInfo) case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) => dagScheduler.handleTaskCompletion(completion) case TaskSetFailed(taskSet, reason) => dagScheduler.handleTaskSetFailed(taskSet, reason) case ResubmitFailedStages => dagScheduler.resubmitFailedStages() } override def postStop() { // Cancel any active jobs in postStop hook dagScheduler.cleanUpAfterSchedulerStop() }
未完待續。。。
后記:自己犧牲了7個月的周末和下班空閑時間,通過研究Spark源碼和原理,總結整理的《深入理解Spark:核心思想與源碼分析》一書現在已經正式出版上市,目前亞馬遜、京東、當當、天貓等網站均有銷售,歡迎感興趣的同學購買。我開始研究源碼時的Spark版本是1.2.0,經過7個多月的研究和出版社近4個月的流程,Spark自身的版本迭代也很快,如今最新已經是1.6.0。目前市面上另外2本源碼研究的Spark書籍的版本分別是0.9.0版本和1.2.0版本,看來這些書的作者都與我一樣,遇到了這種問題。由於研究和出版都需要時間,所以不能及時跟上Spark的腳步,還請大家見諒。但是Spark核心部分的變化相對還是很少的,如果對版本不是過於追求,依然可以選擇本書。
京東(現有滿100減30活動):http://item.jd.com/11846120.html
當當:http://product.dangdang.com/23838168.html