我們在開發中,有如下場景
a) 關閉空閑連接。服務器中,有很多客戶端的連接,空閑一段時間之后需要關閉之。
b) 緩存。緩存中的對象,超過了空閑時間,需要從緩存中移出。
c) 任務超時處理。在網絡協議滑動窗口請求應答式交互時,處理超時未響應的請求。
一種笨笨的辦法就是,使用一個后台線程,遍歷所有對象,挨個檢查。這種笨笨的辦法簡單好用,但是對象數量過多時,可能存在性能問題,檢查間隔時間不好設置,間隔時間過大,影響精確度,多小則存在效率問題。而且做不到按超時的時間順序處理。
這場景,使用DelayQueue最適合了。
DelayQueue是java.util.concurrent中提供的一個很有意思的類。很巧妙,非常棒!但是java doc和Java SE 5.0的source中都沒有提供Sample。我最初在閱讀ScheduledThreadPoolExecutor源碼時,發現DelayQueue的妙用。隨后在實際工作中,應用在session超時管理,網絡應答通訊協議的請求超時處理。
本文將會對DelayQueue做一個介紹,然后列舉應用場景。並且提供一個Delayed接口的實現和Sample代碼。
DelayQueue是一個BlockingQueue,其特化的參數是Delayed。(不了解BlockingQueue的同學,先去了解BlockingQueue再看本文)
Delayed擴展了Comparable接口,比較的基准為延時的時間值,Delayed接口的實現類getDelay的返回值應為固定值(final)。DelayQueue內部是使用PriorityQueue實現的。
DelayQueue = BlockingQueue + PriorityQueue + Delayed
DelayQueue的關鍵元素BlockingQueue、PriorityQueue、Delayed。可以這么說,DelayQueue是一個使用優先隊列(PriorityQueue)實現的BlockingQueue,優先隊列的比較基准值是時間。
他們的基本定義如下
public interface Comparable<T> { public int compareTo(T o); }
public interface Delayed extends Comparable<Delayed> { long getDelay(TimeUnit unit); }
public class DelayQueue<E extends Delayed> implements BlockingQueue<E> { private final PriorityQueue<E> q = new PriorityQueue<E>(); }
DelayQueue內部的實現使用了一個優先隊列PriorityQueue。當調用DelayQueue的offer方法時,把Delayed對象加入到優先隊列q PriorityQueue中。如下:
public boolean offer(E e) { final ReentrantLock lock = this.lock; lock.lock(); try { E first = q.peek(); q.offer(e); if (first == null || e.compareTo(first) < 0) available.signalAll(); return true; } finally { lock.unlock(); } }
DelayQueue的take方法,把優先隊列q的first拿出來(peek),如果沒有達到延時閥值,則進行await處理。如下:
public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { for (;;) { E first = q.peek(); if (first == null) { available.await(); } else { long delay = first.getDelay(TimeUnit.NANOSECONDS); if (delay > 0) { long tl = available.awaitNanos(delay); } else { E x = q.poll(); assert x != null; if (q.size() != 0) available.signalAll(); // wake up other takers return x; } } } } finally { lock.unlock(); } }
--------------
以下是Delayed的實現
import java.util.concurrent.Delayed; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicLong; public class DelayItem<T> implements Delayed { /** Base of nanosecond timings, to avoid wrapping */ private static final long NANO_ORIGIN = System.nanoTime(); /** * Returns nanosecond time offset by origin */ final static long now() { return System.nanoTime() - NANO_ORIGIN; } /** * Sequence number to break scheduling ties, and in turn to guarantee FIFO order among tied * entries. */ private static final AtomicLong sequencer = new AtomicLong(0); /** Sequence number to break ties FIFO */ private final long sequenceNumber; /** The time the task is enabled to execute in nanoTime units */ private final long time; private final T item; public DelayItem(T submit, long timeout) { this.time = now() + timeout; this.item = submit; this.sequenceNumber = sequencer.getAndIncrement(); } public T getItem() { return this.item; } public long getDelay(TimeUnit unit) { long d = unit.convert(time - now(), TimeUnit.NANOSECONDS); return d; } public int compareTo(Delayed other) { if (other == this) // compare zero ONLY if same object return 0; if (other instanceof DelayItem) { DelayItem x = (DelayItem) other; long diff = time - x.time; if (diff < 0) return -1; else if (diff > 0) return 1; else if (sequenceNumber < x.sequenceNumber) return -1; else return 1; } long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS)); return (d == 0) ? 0 : ((d < 0) ? -1 : 1); } }
以下是Cache的實現,包括了put和get方法,還包括了可執行的main函數。
import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.DelayQueue; import java.util.concurrent.TimeUnit; import java.util.logging.Level; import java.util.logging.Logger; public class Cache<K, V> { private static final Logger LOG = Logger.getLogger(Cache.class.getName()); private ConcurrentMap<K, V> cacheObjMap = new ConcurrentHashMap<K, V>(); private DelayQueue<DelayItem<Pair<K, V>>> q = new DelayQueue<DelayItem<Pair<K, V>>>(); private Thread daemonThread; public Cache() { Runnable daemonTask = new Runnable() { public void run() { daemonCheck(); } }; daemonThread = new Thread(daemonTask); daemonThread.setDaemon(true); daemonThread.setName("Cache Daemon"); daemonThread.start(); } private void daemonCheck() { if (LOG.isLoggable(Level.INFO)) LOG.info("cache service started."); for (;;) { try { DelayItem<Pair<K, V>> delayItem = q.take(); if (delayItem != null) { // 超時對象處理 Pair<K, V> pair = delayItem.getItem(); cacheObjMap.remove(pair.first, pair.second); // compare and remove } } catch (InterruptedException e) { if (LOG.isLoggable(Level.SEVERE)) LOG.log(Level.SEVERE, e.getMessage(), e); break; } } if (LOG.isLoggable(Level.INFO)) LOG.info("cache service stopped."); } // 添加緩存對象 public void put(K key, V value, long time, TimeUnit unit) { V oldValue = cacheObjMap.put(key, value); if (oldValue != null) q.remove(key); long nanoTime = TimeUnit.NANOSECONDS.convert(time, unit); q.put(new DelayItem<Pair<K, V>>(new Pair<K, V>(key, value), nanoTime)); } public V get(K key) { return cacheObjMap.get(key); } // 測試入口函數 public static void main(String[] args) throws Exception { Cache<Integer, String> cache = new Cache<Integer, String>(); cache.put(1, "aaaa", 3, TimeUnit.SECONDS); Thread.sleep(1000 * 2); { String str = cache.get(1); System.out.println(str); } Thread.sleep(1000 * 2); { String str = cache.get(1); System.out.println(str); } } }
運行Sample,main函數執行的結果是輸出兩行,第一行為aaa,第二行為null。