Given an integer array nums
, return the number of range sums that lie in [lower, upper]
inclusive.
Range sum S(i, j)
is defined as the sum of the elements in nums
between indices i
and j
(i
≤ j
), inclusive.
Note:
A naive algorithm of O(n2) is trivial. You MUST do better than that.
Example:
Input: nums =[-2,5,-1]
, lower =-2
, upper =2
, Output: 3 Explanation: The three ranges are :[0,0]
,[2,2]
,[0,2]
and their respective sums are:-2, -1, 2
.
Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.
這道題給了我們一個數組,又給了一個下限和一個上限,讓求有多少個不同的區間使得每個區間的和在給定的上下限之間。這道題的難度系數給的是 Hard,的確是一道難度不小的題,題目中也說了 Brute Force 的方法太 Naive 了,只能另想方法了。To be honest,這題超出了博主的能力范圍,所以博主也沒掙扎了,直接上網搜大神們的解法啦。首先根據前面的那幾道類似題 Range Sum Query - Mutable,Range Sum Query 2D - Immutable 和 Range Sum Query - Immutable 的解法可知類似的區間和的問題一定是要計算累積和數組 sums 的,其中 sum[i] = nums[0] + nums[1] + ... + nums[i],對於某個i來說,只有那些滿足 lower <= sum[i] - sum[j] <= upper 的j能形成一個區間 [j, i] 滿足題意,目標就是來找到有多少個這樣的 j (0 =< j < i) 滿足 sum[i] - upper =< sum[j] <= sum[i] - lower,可以用 C++ 中由紅黑樹實現的 multiset 數據結構可以對其中數據排序,然后用 upperbound 和 lowerbound 來找臨界值。lower_bound 是找數組中第一個不小於給定值的數(包括等於情況),而 upper_bound 是找數組中第一個大於給定值的數,那么兩者相減,就是j的個數,參見代碼如下:
解法一:
class Solution { public: int countRangeSum(vector<int>& nums, int lower, int upper) { int res = 0; long long sum = 0; multiset<long long> sums; sums.insert(0); for (int i = 0; i < nums.size(); ++i) { sum += nums[i]; res += distance(sums.lower_bound(sum - upper), sums.upper_bound(sum - lower)); sums.insert(sum); } return res; } };
我們再來看一種方法,這種方法的思路和前一種一樣,只是沒有 STL 的 multiset 和 lower_bound 和 upper_bound 函數,而是使用了 Merge Sort 來解,在混合的過程中,已經給左半邊 [start, mid) 和右半邊 [mid, end) 排序了。當遍歷左半邊,對於每個i,需要在右半邊找出k和j,使其滿足:
j是第一個滿足 sums[j] - sums[i] > upper 的下標
k是第一個滿足 sums[k] - sums[i] >= lower 的下標
那么在 [lower, upper] 之間的區間的個數是 j - k,同時也需要另一個下標t,用來拷貝所有滿足 sums[t] < sums[i] 到一個寄存器 Cache 中以完成混合排序的過程,這個步驟是混合排序的精髓所在,實際上這個寄存器的作用就是將 [start, end) 范圍內的數字排好序先存到寄存器中,然后再覆蓋原數組對應的位置即可,(注意這里 sums 可能會整型溢出,使用長整型 long 代替),參見代碼如下:
解法二:
class Solution { public: int countRangeSum(vector<int>& nums, int lower, int upper) { vector<long> sums(nums.size() + 1, 0); for (int i = 0; i < nums.size(); ++i) { sums[i + 1] = sums[i] + nums[i]; } return countAndMergeSort(sums, 0, sums.size(), lower, upper); } int countAndMergeSort(vector<long>& sums, int start, int end, int lower, int upper) { if (end - start <= 1) return 0; int mid = start + (end - start) / 2; int cnt = countAndMergeSort(sums, start, mid, lower, upper) + countAndMergeSort(sums, mid, end, lower, upper); int j = mid, k = mid, t = mid; vector<int> cache(end - start, 0); for (int i = start, r = 0; i < mid; ++i, ++r) { while (k < end && sums[k] - sums[i] < lower) ++k; while (j < end && sums[j] - sums[i] <= upper) ++j; while (t < end && sums[t] < sums[i]) cache[r++] = sums[t++]; cache[r] = sums[i]; cnt += j - k; } copy(cache.begin(), cache.begin() + t - start, sums.begin() + start); return cnt; } };
Github 同步地址:
https://github.com/grandyang/leetcode/issues/327
類似題目:
Range Sum Query 2D - Immutable
Count of Smaller Numbers After Self
參考資料:
https://leetcode.com/problems/count-of-range-sum/
https://leetcode.com/problems/count-of-range-sum/discuss/77990/Share-my-solution