本文專門介紹MongoDB的命令行操作。其實,這些操作在MongoDB官網提供的Quick Reference上都有,但是英文的,為了方便,這里將其稍微整理下,方便查閱。
登錄和退出
mongo命令直接加MongoDB服務器的IP地址(比如:mongo 10.77.20.xx),就可以利用Mongo的默認端口號(27017)登陸Mongo,然后便能夠進行簡單的命令行操作。
至於退出,直接exit,然后回車就好了。
[plain]
$ mongo 10.77.20.xx
MongoDB shell version: 2.0.4
connecting to: 10.77.20.xx/test
> show collections
> exit
bye
從以上可以看出,登錄后mongo會自動連上一個名為test的數據庫。如果這個數據庫不存在,那么mongo會自動建立一個名為test的數 據庫。上面的例子,由於Mongo服務器上沒有名為test的db,因此,mongo新建了一個空的名為test的db。其中,沒有任何 collection。
database級操作
2.1 查看服務器上的數據庫
> show dbs
admin (empty)
back_up (empty)
blogtest 0.203125GB
local 44.056640625GB
test (empty)
2.2 切換數據庫
切換到blogtest數據庫(從默認的test數據庫)
> use blogtest
switched to db blogtest
mongo中,db代表當前使用的數據庫。這樣,db就從原來的test,變為現在的blogtest數據庫。
2.3 查看當前數據庫中的所有集合
> show collections
book
system.indexes
user
2.4 創建數據庫
mongo中創建數據庫采用的也是use命令,如果use后面跟的數據庫名不存在,那么mongo將會新建該數據庫。不過,實際上只執行use命令后,mongo是不會新建該數據庫的,直到你像該數據庫中插入了數據。
> use test2
switched to db test2
> show dbs
admin (empty)
back_up (empty)
blogtest 0.203125GB
local 44.056640625GB
test (empty)
到這里並沒有看到剛才新建的test2數據庫。
> db.hello.insert({"name":"testdb"})
該操作會在test2數據庫中新建一個hello集合,並在其中插入一條記錄。
> show dbs
admin (empty)
back_up (empty)
blogtest 0.203125GB
local 44.056640625GB
test (empty)
test2 0.203125GB
> show collections
hello
system.indexes
這樣,便可以看到mongo的確創建了test2數據庫,其中有一個hello集合。
2.5 刪除數據庫
> db.dropDatabase()
{ "dropped" : "test2", "ok" : 1 }
> show dbs
admin (empty)
back_up (empty)
blogtest 0.203125GB
local 44.056640625GB
test (empty)
2.6 查看當前數據庫
> db
test2
可以看出刪除test2數據庫之后,當前的db還是指向它,只有當切換數據庫之后,test2才會徹底消失。
collection級操作
3.1 新建collection
> db.createCollection("Hello")
{ "ok" : 1 }
> show collections
Hello
system.indexes
從上面2.4也可以看出,直接向一個不存在的collection中插入數據也能創建一個collection。
> db.hello2.insert({"name":"lfqy"})
> show collections
Hello
hello2
system.indexes
3.2 刪除collection
> db.Hello.drop()
true
返回true說明刪除成功,false說明沒有刪除成功。
> db.hello.drop()
false
不存在名為hello的collection,因此,刪除失敗。
3.3 重命名collection
將hello2集合重命名為HELLO
> show collections
hello2
system.indexes
> db.hello2.renameCollection("HELLO")
{ "ok" : 1 }
> show collections
HELLO
system.indexes
3.4 查看當前數據庫中的所有collection
>show collections
3.5 建立索引在HELLO集合上,建立對ID字段的索引,1代表升序。
>db.HELLO.ensureIndex({ID:1})
Record級的操作
這一小節從這里開始,我們用事先存在的blogtest數據庫做測試,其中有兩個Collection,一個是book,另一個是user。
4.1 插入操作
[plain]
4.1.1 向user集合中插入兩條記錄
> db.user.insert({'name':'Gal Gadot','gender':'female','age':28,'salary':11000})
> db.user.insert({'name':'Mikie Hara','gender':'female','age':26,'salary':7000})
4.1.2 同樣也可以用save完成類似的插入操作
> db.user.save({'name':'Wentworth Earl Miller','gender':'male','age':41,'salary':33000})
4.2 查找操作
4.2.1 查找集合中的所有記錄
[plain]
> db.user.find()
{ "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }
{ "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }
{ "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }
{ "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }
{ "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13 }
4.2.2 查找集合中的符合條件的記錄
[plain]
(1)單一條件
a)Exact Equal:
查詢age為了23的數據
> db.user.find({"age":23})
{ "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }
b)Great Than:
查詢salary大於5000的數據
> db.user.find({salary:{$gt:5000}}) { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }
c)Fuzzy Match
查詢name中包含'a'的數據
> db.user.find({name:/a/}) { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }
查詢name以G打頭的數據
> db.user.find({name:/^G/})
{ "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }
(2)多條件"與"
查詢age小於30,salary大於6000的數據
> db.user.find({age:{$lt:30},salary:{$gt:6000}}) { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }
(3)多條件"或"
查詢age小於25,或者salary大於10000的記錄
> db.user.find({$or:[{salary:{$gt:10000}},{age:{$lt:25}}]}) { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 } { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }
4.2.3 查詢第一條記錄
將上面的find替換為findOne()可以查找符合條件的第一條記錄。
[plain]
將上面的find替換為findOne()可以查找符合條件的第一條記錄。
> db.user.findOne({$or:[{salary:{$gt:10000}},{age:{$lt:25}}]}) { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }
4.2.4 查詢記錄的指定字段
[plain]
查詢user集合中所有記錄的name,age,salary,sex_orientation字段
> db.user.find({},{name:1,age:1,salary:1,sex_orientation:true}) { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "age" : 23, "salary" : 15 } { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }
注意:這里的1表示顯示此列的意思,也可以用true表示。
4.2.5 查詢指定字段的數據,並去重。
[plain]
查詢gender字段的數據,並去掉重復數據
> db.user.distinct('gender')
[ "male", "female" ]
4.2.6 對查詢結果集的操作
(1)Pretty Print
為了方便,mongo也提供了pretty print工具,db.collection.pretty()或者是db.collection.forEach(printjson)
> db.user.find().pretty() { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 } { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13 }
(2)指定結果集顯示的條目
a)顯示結果集中的前3條記錄
> db.user.find().limit(3) { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 } { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }
b)查詢第1條以后的所有數據
> db.user.find().skip(1) { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }
c)對結果集排序
升序
> db.user.find().sort({salary:1}) { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }
降序
> db.user.find().sort({salary:-1}) { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }
4.2.7 統計查詢結果中記錄的條數
[plain]
(1)統計集合中的所有記錄條數
> db.user.find().count()
5
(2)查詢符合條件的記錄數
查詢salary小於4000或大於10000的記錄數
> db.user.find({$or: [{salary: {$lt:4000}}, {salary: {$gt:10000}}]}).count()
4.3 刪除操作
4.3.1 刪除整個集合中的所有數據
[plain]
> db.test.insert({name:"asdf"})
> show collections
book
system.indexes
test
user
到這里新建了一個集合,名為test。
刪除test中的所有記錄。
> db.test.remove()
PRIMARY> show collections
book
system.indexes
test
user
> db.test.find()
可見test中的記錄全部被刪除。
注意db.collection.remove()和drop()的區別,remove()只是刪除了集合中所有的記錄,而集合中原有的索引等信息還在,而drop()則把集合相關信息整個刪除(包括索引)。
4.3.2 刪除集合中符合條件的所有記錄
[plain] > db.user.remove({name:'lfqy'}) > db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } > db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("52455cc825e437dfea8fd4f8"), "name" : "2", "gender" : "female", "age" : 28, "salary" : 2 } { "_id" : ObjectId("52455d8a25e437dfea8fd4fa"), "name" : "1", "gender" : "female", "age" : 28, "salary" : 1 } > db.user.remove( {salary :{$lt:10}}) > db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }
4.3.3 刪除集合中符合條件的一條記錄
> db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("52455de325e437dfea8fd4fb"), "name" : "1", "gender" : "female", "age" : 28, "salary" : 1 } { "_id" : ObjectId("52455de925e437dfea8fd4fc"), "name" : "2", "gender" : "female", "age" : 28, "salary" : 2 } > db.user.remove({salary :{$lt:10}},1) > db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("52455de925e437dfea8fd4fc"), "name" : "2", "gender" : "female", "age" : 28, "salary" : 2 }
當然,也可以是db.user.remove({salary :{$lt:10}},true)
4.4 更新操作
4.4.1 賦值更新
db.collection.update(criteria, objNew, upsert, multi )
criteria:update的查詢條件,類似sql update查詢內where后面的
objNew:update的對象和一些更新的操作符(如$,$inc...)等,也可以理解為sql update查詢內set后面的。
upsert : 如果不存在update的記錄,是否插入objNew,true為插入,默認是false,不插入。
multi : mongodb默認是false,只更新找到的第一條記錄,如果這個參數為true,就把按條件查出來多條記錄全部更新。
> db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "name" : "lfqy", "gender" : "male", "age" : 28, "salary" : 1 } { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "name" : "lfqy", "gender" : "male", "age" : 28, "salary" : 2 } > db.user.update({name:'lfqy'},{$set:{age:23}},false,true) > db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 1 } { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 2 } db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 1 } { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 2 } > db.user.update({name:'lfqy1'},{$set:{age:23}},true,true) > db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 1 } { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 2 } { "_id" : ObjectId("5245610881c83a5bf26fc285"), "age" : 23, "name" : "lfqy1" } > db.user.update({name:'lfqy'},{$set:{interest:"NBA"}},false,true) > db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("5245610881c83a5bf26fc285"), "age" : 23, "name" : "lfqy1" } { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 1 } { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 2 }
4.4.2 增值更新
> db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("5245610881c83a5bf26fc285"), "age" : 23, "name" : "lfqy1" } { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 1 } { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 2 } > db.user.update({gender:'female'},{$inc:{salary:50}},false,true) > db.user.find() { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11050 } { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7050 } { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 } { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 } { "_id" : ObjectId("5245610881c83a5bf26fc285"), "age" : 23, "name" : "lfqy1" } { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 1 } { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 2 }
關於更新操作(db.collection.update(criteria, objNew, upsert, multi )),要說明的是,如果upsert為true,那么在沒有找到符合更新條件的情況下,mongo會在集合中插入一條記錄其值滿足更新條件的記錄(其中的 字段只有更新條件中涉及的字段,字段的值滿足更新條件),然后將其更新(注意,如果更新條件是$lt這種不等式條件,那么upsert插入的記錄只會包含 更新操作涉及的字段,而不會有更新條件中的字段。這也很好理解,因為沒法為這種字段定值,mongo索性就不取這些字段)。如果符合條件的記錄中沒有要更 新的字段,那么mongo會為其創建該字段,並更新。
上面大致介紹了MongoDB命令行中所涉及的操作,只是為了記錄和查閱。