利用caffe生成 lmdb 格式的文件,並對網絡進行FineTuning
數據的組織格式為:
首先,所需要的腳本指令路徑為:
/home/wangxiao/Downloads/caffe-master/examples/imagenet/
其中,生成lmdb的文件為: create_imagenet.sh
接下來的主要任務就是修改自己的data的存放路徑了。
1 #!/usr/bin/env sh 2 # Create the imagenet lmdb inputs 3 # N.B. set the path to the imagenet train + val data dirs 4
5 EXAMPLE=../wangxiao 6 DATA=../fine_tuning_data 7 TOOLS=../build/tools 8
9 TRAIN_DATA_ROOT=../fine_tuning_data/training/data/
10 VAL_DATA_ROOT=../fine_tuning_data/validation/data/
11
12 #TRAIN_DATA_ROOT=/media/yukai/247317a3-e6b5-45d4-81d1-956930526746/---------------/Attribute reconginition/final_PETA_dataset/whole_benchmark/用於微調網絡的數據/training/data/
13 #VAL_DATA_ROOT=/media/yukai/247317a3-e6b5-45d4-81d1-956930526746/---------------/Attribute reconginition/final_PETA_dataset/whole_benchmark/用於微調網絡的數據/validation/data/
14
15 # Set RESIZE=true to resize the images to 256x256. Leave as false if images have 16 # already been resized using another tool. 17
18 # RESIZE=false default parameter and wangxiao modify it in 2015.10.13 1:25
19
20 RESIZE=true
21 if $RESIZE; then 22 RESIZE_HEIGHT=256
23 RESIZE_WIDTH=256
24 else
25 RESIZE_HEIGHT=0
26 RESIZE_WIDTH=0
27 fi 28
29 if [ ! -d "$TRAIN_DATA_ROOT" ]; then 30 echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
31 echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \ 32 "where the ImageNet training data is stored."
33 exit 1
34 fi 35
36 if [ ! -d "$VAL_DATA_ROOT" ]; then 37 echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
38 echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \ 39 "where the ImageNet validation data is stored."
40 exit 1
41 fi 42
43 echo "Creating train lmdb..."
44
45 GLOG_logtostderr=1 $TOOLS/convert_imageset \ 46 --resize_height=$RESIZE_HEIGHT \ 47 --resize_width=$RESIZE_WIDTH \ 48 --shuffle \ 49 $TRAIN_DATA_ROOT \ 50 $DATA/training/final_train_data.txt \ 51 $EXAMPLE/PETA_train_lmdb 52
53 #echo "Creating val lmdb..."
54
55 #GLOG_logtostderr=1 $TOOLS/convert_imageset \ 56 # --resize_height=$RESIZE_HEIGHT \ 57 # --resize_width=$RESIZE_WIDTH \ 58 # --shuffle \ 59 # $VAL_DATA_ROOT \ 60 # $DATA/validation/final_test_data.txt \ 61 # $EXAMPLE/PETA_val_lmdb 62
63 echo "Done."
都修改完成后,在終端執行:create_imagenet.sh,然后會有如此的提示,表示正在生成lmdb文件:
然后完成后,提示: Done. 然后可以看到已經生成了所需要的文件:
然后利用 make_imagenet_mean.sh 生成所需要的 mean file :
caffe-master$: sh ./make_imagenet_mean.sh
1 #!/usr/bin/env sh 2 # Compute the mean image from the imagenet training lmdb 3 # N.B. this is available in data/ilsvrc12 4
5 EXAMPLE=../wangxiao 6 DATA=./data 7 TOOLS=../build/tools 8
9 #echo $TOOLS/compute_image_mean $EXAMPLE/HAT_train_lmdb \ 10 # $DATA/HAT_mean.binaryproto 11 $TOOLS/compute_image_mean $EXAMPLE/HAT_train_lmdb \ 12 $DATA/HAT_mean.binaryproto 13 echo "Done."
然后就生成了 HAT_mean.binaryproto
其中,caffe路徑下:/home/wangxiao/Downloads/caffe-master/examples/imagenet/readme.md 對這個過程有一個詳細的解釋。
然后就是查看 solver.prototxt:
1 net: "models/bvlc_reference_caffenet/train_val.prototxt"
2 test_iter: 1000
3 test_interval: 1000
4 base_lr: 0.01
5 lr_policy: "step"
6 gamma: 0.1
7 stepsize: 100000
8 display: 20
9 max_iter: 450000
10 momentum: 0.9
11 weight_decay: 0.0005
12 snapshot: 10000
13 snapshot_prefix: "models/bvlc_reference_caffenet/caffenet_train"
14 solver_mode: GPU
打開 models/bvlc_reference_caffenet/train_val.prototxt
需要修改的也就到第55行:
1 name: "CaffeNet"
2 layer { 3 name: "data"
4 type: "Data"
5 top: "data"
6 top: "label"
7 include { 8 phase: TRAIN 9 } 10 transform_param { 11 mirror: true
12 crop_size: 227
13 mean_file: "wangxiao/HAT_data/HAT_mean.binaryproto"
14 } 15 # mean pixel / channel-wise mean instead of mean image 16 # transform_param { 17 # crop_size: 227
18 # mean_value: 104
19 # mean_value: 117
20 # mean_value: 123
21 # mirror: true
22 # } 23 data_param { 24 source: "wangxiao/HAT_data/HAT_train_lmdb"
25 batch_size: 256
26 backend: LMDB 27 } 28 } 29 layer { 30 name: "data"
31 type: "Data"
32 top: "data"
33 top: "label"
34 include { 35 phase: TEST 36 } 37 transform_param { 38 mirror: false
39 crop_size: 227
40 mean_file: "wangxiao/HAT_data/HAT_mean.binaryproto"
41 } 42 # mean pixel / channel-wise mean instead of mean image 43 # transform_param { 44 # crop_size: 227
45 # mean_value: 104
46 # mean_value: 117
47 # mean_value: 123
48 # mirror: true
49 # } 50 data_param { 51 source: "wangxiao/HAT_data/HAT_val_lmdb"
52 batch_size: 50
53 backend: LMDB 54 } 55 }
然后執行:
終端會有顯示:
1 I0103 13:44:21.027832 9543 net.cpp:297] Network initialization done. 2 I0103 13:44:21.027839 9543 net.cpp:298] Memory required for data: 1757220868
3 I0103 13:44:21.027928 9543 solver.cpp:66] Solver scaffolding done. 4 I0103 13:44:21.028312 9543 caffe.cpp:212] Starting Optimization 5 I0103 13:44:21.028326 9543 solver.cpp:294] Solving CaffeNet 6 I0103 13:44:21.028333 9543 solver.cpp:295] Learning Rate Policy: step 7 I0103 13:44:22.012593 9543 solver.cpp:243] Iteration 0, loss = 7.52783
8 I0103 13:44:22.012660 9543 solver.cpp:259] Train net output #0: loss = 7.52783 (* 1 = 7.52783 loss) 9 I0103 13:44:22.012687 9543 solver.cpp:590] Iteration 0, lr = 0.01
10 I0103 13:44:41.812361 9543 solver.cpp:243] Iteration 20, loss = 3.9723
11 I0103 13:44:41.812413 9543 solver.cpp:259] Train net output #0: loss = 3.9723 (* 1 = 3.9723 loss) 12 I0103 13:44:41.812428 9543 solver.cpp:590] Iteration 20, lr = 0.01
13 I0103 13:45:01.553021 9543 solver.cpp:243] Iteration 40, loss = 2.9715
14 I0103 13:45:01.553104 9543 solver.cpp:259] Train net output #0: loss = 2.9715 (* 1 = 2.9715 loss) 15 I0103 13:45:01.553119 9543 solver.cpp:590] Iteration 40, lr = 0.01
16 I0103 13:45:21.574745 9543 solver.cpp:243] Iteration 60, loss = 2.91547
17 I0103 13:45:21.574798 9543 solver.cpp:259] Train net output #0: loss = 2.91547 (* 1 = 2.91547 loss) 18 I0103 13:45:21.574811 9543 solver.cpp:590] Iteration 60, lr = 0.01
19 I0103 13:45:41.247493 9543 solver.cpp:243] Iteration 80, loss = 2.96451
20 I0103 13:45:41.247627 9543 solver.cpp:259] Train net output #0: loss = 2.96451 (* 1 = 2.96451 loss) 21 I0103 13:45:41.247642 9543 solver.cpp:590] Iteration 80, lr = 0.01
22 I0103 13:46:00.941267 9543 solver.cpp:243] Iteration 100, loss = 2.85887
23 I0103 13:46:00.941318 9543 solver.cpp:259] Train net output #0: loss = 2.85887 (* 1 = 2.85887 loss) 24 I0103 13:46:00.941332 9543 solver.cpp:590] Iteration 100, lr = 0.01
25 I0103 13:46:20.628329 9543 solver.cpp:243] Iteration 120, loss = 2.91318
26 I0103 13:46:20.628463 9543 solver.cpp:259] Train net output #0: loss = 2.91318 (* 1 = 2.91318 loss) 27 I0103 13:46:20.628476 9543 solver.cpp:590] Iteration 120, lr = 0.01
28 I0103 13:46:40.621937 9543 solver.cpp:243] Iteration 140, loss = 3.06499
29 I0103 13:46:40.621989 9543 solver.cpp:259] Train net output #0: loss = 3.06499 (* 1 = 3.06499 loss) 30 I0103 13:46:40.622004 9543 solver.cpp:590] Iteration 140, lr = 0.01
31 I0103 13:47:00.557921 9543 solver.cpp:243] Iteration 160, loss = 2.9818
32 I0103 13:47:00.558048 9543 solver.cpp:259] Train net output #0: loss = 2.9818 (* 1 = 2.9818 loss) 33 I0103 13:47:00.558063 9543 solver.cpp:590] Iteration 160, lr = 0.01
因為設置的迭代次數為: 450000次,所以,接下來就是睡覺了。。。O(∩_∩)O~ 感謝木得兄剛剛的幫助。
------ 未完待續------
另外就是,當loss 后期變化不大的時候,可以試着調整學習率, 在Solver.prototext中:
1 train_net: "models/bvlc_reference_caffenet/train_val.prototxt"
2 # test_iter: 1000
3 # test_interval: 1000
4 base_lr: 0.0001
5 lr_policy: "step"
6 gamma: 0.1
7 stepsize: 100000
8 display: 20
9 max_iter: 450000
10 momentum: 0.9
11 weight_decay: 0.0005
12 snapshot: 10000
13 snapshot_prefix: "models/bvlc_reference_caffenet/caffenet_train"
14 solver_mode: GPU
base_lr: 0.0001 每次可以改為0.1×base_lr, 這里的 0.0001 是我兩次調整之后的數值。
然后運行 resume_training.sh
1 #!/usr/bin/env sh 2
3 ./build/tools/caffe train \ 4 --solver=models/bvlc_reference_caffenet/solver.prototxt \ 5 --snapshot=models/bvlc_reference_caffenet/caffenet_train_iter_88251.solverstate
將snapshot改為之前中斷時的結果即可,即: caffenet_train_iter_88251.solverstate
繼續看loss是否降低。。。
--------------------------------- 未完待續 ---------------------------------