所有的層都具有的參數,如name, type, bottom, top和transform_param請參看我的前一篇文章:Caffe學習系列(2):數據層及參數
本文只講解視覺層(Vision Layers)的參數,視覺層包括Convolution, Pooling, Local Response Normalization (LRN), im2col等層。
1、Convolution層:
就是卷積層,是卷積神經網絡(CNN)的核心層。
層類型:Convolution
lr_mult: 學習率的系數,最終的學習率是這個數乘以solver.prototxt配置文件中的base_lr。如果有兩個lr_mult, 則第一個表示權值的學習率,第二個表示偏置項的學習率。一般偏置項的學習率是權值學習率的兩倍。
在后面的convolution_param中,我們可以設定卷積層的特有參數。
必須設置的參數:
num_output: 卷積核(filter)的個數
kernel_size: 卷積核的大小。如果卷積核的長和寬不等,需要用kernel_h和kernel_w分別設定
其它參數:
stride: 卷積核的步長,默認為1。也可以用stride_h和stride_w來設置。
pad: 擴充邊緣,默認為0,不擴充。 擴充的時候是左右、上下對稱的,比如卷積核的大小為5*5,那么pad設置為2,則四個邊緣都擴充2個像素,即寬度和高度都擴充了4個像素,這樣卷積運算之后的特征圖就不會變小。也可以通過pad_h和pad_w來分別設定。
layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 20 kernel_size: 5 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } }
layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } }
pooling層的運算方法基本是和卷積層是一樣的。

layers { name: "norm1" type: LRN bottom: "pool1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } }
4、im2col層
如果對matlab比較熟悉的話,就應該知道im2col是什么意思。它先將一個大矩陣,重疊地划分為多個子矩陣,對每個子矩陣序列化成向量,最后得到另外一個矩陣。
看一看圖就知道了:
在caffe中,卷積運算就是先對數據進行im2col操作,再進行內積運算(inner product)。這樣做,比原始的卷積操作速度更快。
看看兩種卷積操作的異同: