前言:
以前沒有接觸過stringstream這個類的時候,常用的字符串和數字轉換函數就是sscanf和sprintf函數。開始的時候就覺得這兩個函數應經很叼了,但是畢竟是屬於c的。c++中引入了流的概念,通過流來實現字符串和數字的轉換方便多了。在這里,總結之前的,並介紹新學的。
常見格式串:
%% 印出百分比符號,不轉換。
%c 整數轉成對應的 ASCII 字元。
%d 整數轉成十進位。
%f 倍精確度數字轉成浮點數。
%o 整數轉成八進位。
%s 整數轉成字符串。
%x 整數轉成小寫十六進位。
%X 整數轉成大寫十六進位。
%n sscanf(str, "%d%n", &dig, &n),%n表示一共轉換了多少位的字符
sprintf函數
sprintf函數原型為 int sprintf(char *str, const char *format, ...)。作用是格式化字符串,具體功能如下所示:
(1)將數字變量轉換為字符串。
(2)得到整型變量的16進制和8進制字符串。
(3)連接多個字符串。
int main(){ char str[256] = { 0 }; int data = 1024; //將data轉換為字符串 sprintf(str,"%d",data); //獲取data的十六進制 sprintf(str,"0x%X",data); //獲取data的八進制 sprintf(str,"0%o",data); const char *s1 = "Hello"; const char *s2 = "World"; //連接字符串s1和s2 sprintf(str,"%s %s",s1,s2); cout<<str<<endl; return 0; }
sscanf函數
sscanf函數原型為int sscanf(const char *str, const char *format, ...)。將參數str的字符串根據參數format字符串來轉換並格式化數據,轉換后的結果存於對應的參數內。具體功能如下:
(1)根據格式從字符串中提取數據。如從字符串中取出整數、浮點數和字符串等。
(2)取指定長度的字符串
(3)取到指定字符為止的字符串
(4)取僅包含指定字符集的字符串
(5)取到指定字符集為止的字符串
當然,sscanf可以支持格式串"%[]"形式的,有興趣的可以研究一下。
int main(){ char s[15] = "123.432,432"; int n; double f1; int f2; sscanf(s, "%lf,%d%n", &f1, &f2, &n); cout<<f1<<" "<<f2<<" "<<n; return 0; }
輸出結果:123.432 432 11, 即一共轉換了11位的字符。
stringstream類:
<sstream>庫定義了三種類:istringstream、ostringstream和stringstream,分別用來進行流的輸入、輸出和輸入輸出操作。
1.stringstream::str(); returns a string object with a copy of the current contents of the stream.
2.stringstream::str (const string& s); sets s as the contents of the stream, discarding any previous contents.
3.stringstream清空,stringstream s; s.str("");
4.實現任意類型的轉換
template<typename out_type, typename in_value>
out_type convert(const in_value & t){
stringstream stream;
stream<<t;//向流中傳值
out_type result;//這里存儲轉換結果
stream>>result;//向result中寫入值
return result;
}
int main(){ string s = "1 23 # 4"; stringstream ss; ss<<s; while(ss>>s){ cout<<s<<endl; int val = convert<int>(s); cout<<val<<endl; } return 0; }
輸出:1 1 23 23 # 0 4 4
順便說一下,今天做題的時候也用到了stringstream這個類,是二叉樹的序列化和反序列化。
題目鏈接:http://www.lintcode.com/zh-cn/problem/binary-tree-serialization/
二叉樹的序列化和反序列化
設計一個算法,並編寫代碼來序列化和反序列化二叉樹。將樹寫入一個文件被稱為“序列化”,讀取文件后重建同樣的二叉樹被稱為“反序列化”。如何反序列化或序列化二叉樹是沒有限制的,你只需要確保可以將二叉樹序列化為一個字符串,並且可以將字符串反序列化為原來的樹結構。
思路:
通過先序遍歷建立二叉樹的序列化,其中空子樹用'#'來表示。反序列化的時候呢,遇到'#'就停止遞歸構造。另外序列化的時候是將整數通過stringstream轉換成字符串,反序列化是將字符串通過stringstream轉換成整數。
/** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * TreeNode(int val) { * this->val = val; * this->left = this->right = NULL; * } * } */ class Solution { public: /** * This method will be invoked first, you should design your own algorithm * to serialize a binary tree which denote by a root node to a string which * can be easily deserialized by your own "deserialize" method later. */ bool first; template<typename out_type, typename in_value> out_type convert(const in_value & t){ stringstream stream; stream<<t;//向流中傳值 out_type result;//這里存儲轉換結果 stream>>result;//向result中寫入值 return result; } void pre_order(TreeNode *root, string &s){ if(root){ string tmp = convert<string>(root->val); if(!first) s+= " "+tmp; else { first = false; s+=tmp; } pre_order(root->left, s); pre_order(root->right, s); } else { if(first) s+='#'; else { first = false; s+=" #"; } } } string serialize(TreeNode *root) { // write your code here string s=""; first = true; pre_order(root, s);//先序實現序列化 return s; } stringstream ss; void buildT(TreeNode * &T){ string s; ss>>s; if(s == "#") return ; int val = convert<int>(s); T = new TreeNode(val); buildT(T->left); buildT(T->right); } /** * This method will be invoked second, the argument data is what exactly * you serialized at method "serialize", that means the data is not given by * system, it's given by your own serialize method. So the format of data is * designed by yourself, and deserialize it here as you serialize it in * "serialize" method. */ TreeNode *deserialize(string data) { // write your code here TreeNode *T = NULL; ss.str(""); ss<<data; buildT(T); return T; } };