Python線程
Threading用於提供線程相關的操作,線程是應用程序中工作的最小單元。
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import time
def show(arg):
time.sleep(1)
print 'thread'+str(arg)
for i in range(10):
t = threading.Thread(target=show, args=(i,))
t.start()
print 'main thread stop'
上述代碼創建了10個“前台”線程,然后控制器就交給了CPU,CPU根據指定算法進行調度,分片執行指令。
更多方法:
- start 線程准備就緒,等待CPU調度
- setName 為線程設置名稱
- getName 獲取線程名稱
- setDaemon 設置為后台線程或前台線程(默認)
如果是后台線程,主線程執行過程中,后台線程也在進行,主線程執行完畢后,后台線程不論成功與否,均停止
如果是前台線程,主線程執行過程中,前台線程也在進行,主線程執行完畢后,等待前台線程也執行完成后,程序停止 - join 逐個執行每個線程,執行完畢后繼續往下執行,該方法使得多線程變得無意義
- run 線程被cpu調度后自動執行線程對象的run方法
import threading import time class MyThread(threading.Thread): def __init__(self,num): threading.Thread.__init__(self) self.num = num def run(self):#定義每個線程要運行的函數 print("running on number:%s" %self.num) time.sleep(3) if __name__ == '__main__': t1 = MyThread(1) t2 = MyThread(2) t1.start() t2.start()
線程鎖(Lock、RLock)
由於線程之間是進行隨機調度,並且每個線程可能只執行n條執行之后,當多個線程同時修改同一條數據時可能會出現臟數據,所以,出現了線程鎖 - 同一時刻允許一個線程執行操作。
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading import time gl_num = 0 def show(arg): global gl_num time.sleep(1) gl_num +=1 print gl_num for i in range(10): t = threading.Thread(target=show, args=(i,)) t.start() print 'main thread stop'
#!/usr/bin/env python
#coding:utf-8
import threading
import time
gl_num = 0
lock = threading.RLock()
def Func():
lock.acquire()
global gl_num
gl_num +=1
time.sleep(1)
print gl_num
lock.release()
for i in range(10):
t = threading.Thread(target=Func)
t.start()
信號量(Semaphore)
互斥鎖 同時只允許一個線程更改數據,而Semaphore是同時允許一定數量的線程更改數據 ,比如廁所有3個坑,那最多只允許3個人上廁所,后面的人只能等里面有人出來了才能再進去。
import threading,time
def run(n):
semaphore.acquire()
time.sleep(1)
print("run the thread: %s" %n)
semaphore.release()
if __name__ == '__main__':
num= 0
semaphore = threading.BoundedSemaphore(5) #最多允許5個線程同時運行
for i in range(20):
t = threading.Thread(target=run,args=(i,))
t.start()
事件(event)
python線程的事件用於主線程控制其他線程的執行,事件主要提供了三個方法 set、wait、clear。
事件處理的機制:全局定義了一個“Flag”,如果“Flag”值為 False,那么當程序執行 event.wait 方法時就會阻塞,如果“Flag”值為True,那么event.wait 方法時便不再阻塞。
- clear:將“Flag”設置為False
- set:將“Flag”設置為True
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
def do(event):
print 'start'
event.wait()
print 'execute'
event_obj = threading.Event()
for i in range(10):
t = threading.Thread(target=do, args=(event_obj,))
t.start()
event_obj.clear()
inp = raw_input('input:')
if inp == 'true':
event_obj.set()
條件(Condition)
使得線程等待,只有滿足某條件時,才釋放n個線程
import threading
def run(n):
con.acquire()
con.wait()
print("run the thread: %s" %n)
con.release()
if __name__ == '__main__':
con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start()
while True:
inp = input('>>>')
if inp == 'q':
break
con.acquire()
con.notify(int(inp))
con.release()
def condition_func(): ret = False inp = input('>>>') if inp == '1': ret = True return ret def run(n): con.acquire() con.wait_for(condition_func) print("run the thread: %s" %n) con.release() if __name__ == '__main__': con = threading.Condition() for i in range(10): t = threading.Thread(target=run, args=(i,)) t.start()
Timer
定時器,指定n秒后執行某操作
from threading import Timer
def hello():
print("hello, world")
t = Timer(1, hello)
t.start() # after 1 seconds, "hello, world" will be printed
Python 進程
from multiprocessing import Process
import threading
import time
def foo(i):
print 'say hi',i
for i in range(10):
p = Process(target=foo,args=(i,))
p.start()
注意:由於進程之間的數據需要各自持有一份,所以創建進程需要的非常大的開銷。
進程數據共享
進程各自持有一份數據,默認無法共享數據
#!/usr/bin/env python #coding:utf-8 from multiprocessing import Process from multiprocessing import Manager import time li = [] def foo(i): li.append(i) print 'say hi',li for i in range(10): p = Process(target=foo,args=(i,)) p.start() print 'ending',li
#方法一,Array
from multiprocessing import Process,Array
temp = Array('i', [11,22,33,44])
def Foo(i):
temp[i] = 100+i
for item in temp:
print i,'----->',item
for i in range(2):
p = Process(target=Foo,args=(i,))
p.start()
#方法二:manage.dict()共享數據
from multiprocessing import Process,Manager
manage = Manager()
dic = manage.dict()
def Foo(i):
dic[i] = 100+i
print dic.values()
for i in range(2):
p = Process(target=Foo,args=(i,))
p.start()
p.join()
'c': ctypes.c_char, 'u': ctypes.c_wchar, 'b': ctypes.c_byte, 'B': ctypes.c_ubyte, 'h': ctypes.c_short, 'H': ctypes.c_ushort, 'i': ctypes.c_int, 'I': ctypes.c_uint, 'l': ctypes.c_long, 'L': ctypes.c_ulong, 'f': ctypes.c_float, 'd': ctypes.c_double
from multiprocessing import Process, Queue def f(i,q): print(i,q.get()) if __name__ == '__main__': q = Queue() q.put("h1") q.put("h2") q.put("h3") for i in range(10): p = Process(target=f, args=(i,q,)) p.start()
當創建進程時(非使用時),共享數據會被拿到子進程中,當進程中執行完畢后,再賦值給原值。
#!/usr/bin/env python # -*- coding:utf-8 -*- from multiprocessing import Process, Array, RLock def Foo(lock,temp,i): """ 將第0個數加100 """ lock.acquire() temp[0] = 100+i for item in temp: print i,'----->',item lock.release() lock = RLock() temp = Array('i', [11, 22, 33, 44]) for i in range(20): p = Process(target=Foo,args=(lock,temp,i,)) p.start()
進程池
進程池內部維護一個進程序列,當使用時,則去進程池中獲取一個進程,如果進程池序列中沒有可供使用的進進程,那么程序就會等待,直到進程池中有可用進程為止。
進程池中有兩個方法:
- apply
- apply_async
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from multiprocessing import Process,Pool
import time
def Foo(i):
time.sleep(2)
return i+100
def Bar(arg):
print arg
pool = Pool(5)
#print pool.apply(Foo,(1,))
#print pool.apply_async(func =Foo, args=(1,)).get()
for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar)
print 'end'
pool.close()
pool.join()#進程池中進程執行完畢后再關閉,如果注釋,那么程序直接關閉。
協程
線程和進程的操作是由程序觸發系統接口,最后的執行者是系統;協程的操作則是程序員。
協程存在的意義:對於多線程應用,CPU通過切片的方式來切換線程間的執行,線程切換時需要耗時(保存狀態,下次繼續)。協程,則只使用一個線程,在一個線程中規定某個代碼塊執行順序。
協程的適用場景:當程序中存在大量不需要CPU的操作時(IO),適用於協程;
greenlet
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from greenlet import greenlet
def test1():
print 12
gr2.switch()
print 34
gr2.switch()
def test2():
print 56
gr1.switch()
print 78
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()
gevent
import gevent
def foo():
print('Running in foo')
gevent.sleep(0)
print('Explicit context switch to foo again')
def bar():
print('Explicit context to bar')
gevent.sleep(0)
print('Implicit context switch back to bar')
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])
遇到IO操作自動切換:
#!/usr/bin/env python # -*- coding:utf-8 -*- from gevent import monkey monkey.patch_all() import threading import gevent import time def eat(): print(threading.current_thread().getName()) print('eat food 1') time.sleep(20) print('eat food 2') def play(): print(threading.current_thread().getName()) print('play 1') time.sleep(20) print('play 2') g1 = gevent.spawn(eat) g2 = gevent.spawn(play) gevent.joinall([g1, g2]) print('主')
from gevent import monkey; monkey.patch_all() import gevent import urllib2 def f(url): print('GET: %s' % url) resp = urllib2.urlopen(url) data = resp.read() print('%d bytes received from %s.' % (len(data), url)) gevent.joinall([ gevent.spawn(f, 'https://www.python.org/'), gevent.spawn(f, 'https://www.yahoo.com/'), gevent.spawn(f, 'https://github.com/'), ])
