Python之路【第七篇】:線程、進程和協程


Python線程

Threading用於提供線程相關的操作,線程是應用程序中工作的最小單元。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import time
 
def show(arg):
    time.sleep(1)
    print 'thread'+str(arg)
 
for i in range(10):
    t = threading.Thread(target=show, args=(i,))
    t.start()
 
print 'main thread stop'

上述代碼創建了10個“前台”線程,然后控制器就交給了CPU,CPU根據指定算法進行調度,分片執行指令。

更多方法:

  • start            線程准備就緒,等待CPU調度
  • setName      為線程設置名稱
  • getName      獲取線程名稱
  • setDaemon   設置為后台線程或前台線程(默認)
                       如果是后台線程,主線程執行過程中,后台線程也在進行,主線程執行完畢后,后台線程不論成功與否,均停止
                        如果是前台線程,主線程執行過程中,前台線程也在進行,主線程執行完畢后,等待前台線程也執行完成后,程序停止
  • join              逐個執行每個線程,執行完畢后繼續往下執行,該方法使得多線程變得無意義
  • run              線程被cpu調度后自動執行線程對象的run方法
import threading
import time
 
 
class MyThread(threading.Thread):
    def __init__(self,num):
        threading.Thread.__init__(self)
        self.num = num
 
    def run(self):#定義每個線程要運行的函數
 
        print("running on number:%s" %self.num)
 
        time.sleep(3)
 
if __name__ == '__main__':
 
    t1 = MyThread(1)
    t2 = MyThread(2)
    t1.start()
    t2.start()
自定義線程類

線程鎖(Lock、RLock)

由於線程之間是進行隨機調度,並且每個線程可能只執行n條執行之后,當多個線程同時修改同一條數據時可能會出現臟數據,所以,出現了線程鎖 - 同一時刻允許一個線程執行操作。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import time

gl_num = 0

def show(arg):
    global gl_num
    time.sleep(1)
    gl_num +=1
    print gl_num

for i in range(10):
    t = threading.Thread(target=show, args=(i,))
    t.start()

print 'main thread stop'
未使用鎖
#!/usr/bin/env python
#coding:utf-8
  
import threading
import time
  
gl_num = 0
  
lock = threading.RLock()
  
def Func():
    lock.acquire()
    global gl_num
    gl_num +=1
    time.sleep(1)
    print gl_num
    lock.release()
      
for i in range(10):
    t = threading.Thread(target=Func)
    t.start()

信號量(Semaphore)

互斥鎖 同時只允許一個線程更改數據,而Semaphore是同時允許一定數量的線程更改數據 ,比如廁所有3個坑,那最多只允許3個人上廁所,后面的人只能等里面有人出來了才能再進去。

import threading,time

def run(n):
    semaphore.acquire()
    time.sleep(1)
    print("run the thread: %s" %n)
    semaphore.release()

if __name__ == '__main__':

    num= 0
    semaphore  = threading.BoundedSemaphore(5) #最多允許5個線程同時運行
    for i in range(20):
        t = threading.Thread(target=run,args=(i,))
        t.start()

事件(event)

python線程的事件用於主線程控制其他線程的執行,事件主要提供了三個方法 set、wait、clear。

事件處理的機制:全局定義了一個“Flag”,如果“Flag”值為 False,那么當程序執行 event.wait 方法時就會阻塞,如果“Flag”值為True,那么event.wait 方法時便不再阻塞。

  • clear:將“Flag”設置為False
  • set:將“Flag”設置為True
#!/usr/bin/env python
# -*- coding:utf-8 -*-

import threading


def do(event):
    print 'start'
    event.wait()
    print 'execute'


event_obj = threading.Event()
for i in range(10):
    t = threading.Thread(target=do, args=(event_obj,))
    t.start()

event_obj.clear()
inp = raw_input('input:')
if inp == 'true':
    event_obj.set()

條件(Condition)

使得線程等待,只有滿足某條件時,才釋放n個線程

import threading

def run(n):
    con.acquire()
    con.wait()
    print("run the thread: %s" %n)
    con.release()

if __name__ == '__main__':

    con = threading.Condition()
    for i in range(10):
        t = threading.Thread(target=run, args=(i,))
        t.start()

    while True:
        inp = input('>>>')
        if inp == 'q':
            break
        con.acquire()
        con.notify(int(inp))
        con.release()
def condition_func():

    ret = False
    inp = input('>>>')
    if inp == '1':
        ret = True

    return ret


def run(n):
    con.acquire()
    con.wait_for(condition_func)
    print("run the thread: %s" %n)
    con.release()

if __name__ == '__main__':

    con = threading.Condition()
    for i in range(10):
        t = threading.Thread(target=run, args=(i,))
        t.start()
View Code

Timer

定時器,指定n秒后執行某操作

from threading import Timer


def hello():
    print("hello, world")

t = Timer(1, hello)
t.start()  # after 1 seconds, "hello, world" will be printed

Python 進程

from multiprocessing import Process
import threading
import time
 
def foo(i):
    print 'say hi',i
 
for i in range(10):
    p = Process(target=foo,args=(i,))
    p.start()

注意:由於進程之間的數據需要各自持有一份,所以創建進程需要的非常大的開銷。

進程數據共享

進程各自持有一份數據,默認無法共享數據

#!/usr/bin/env python
#coding:utf-8
 
from multiprocessing import Process
from multiprocessing import Manager
 
import time
 
li = []
 
def foo(i):
    li.append(i)
    print 'say hi',li
  
for i in range(10):
    p = Process(target=foo,args=(i,))
    p.start()
     
print 'ending',li
進程間默認無法數據共享
#方法一,Array
from multiprocessing import Process,Array
temp = Array('i', [11,22,33,44])

def Foo(i):
    temp[i] = 100+i
    for item in temp:
        print i,'----->',item

for i in range(2):
    p = Process(target=Foo,args=(i,))
    p.start()

#方法二:manage.dict()共享數據
from multiprocessing import Process,Manager

manage = Manager()
dic = manage.dict()

def Foo(i):
    dic[i] = 100+i
    print dic.values()

for i in range(2):
    p = Process(target=Foo,args=(i,))
    p.start()
    p.join()
    'c': ctypes.c_char,  'u': ctypes.c_wchar,
    'b': ctypes.c_byte,  'B': ctypes.c_ubyte,
    'h': ctypes.c_short, 'H': ctypes.c_ushort,
    'i': ctypes.c_int,   'I': ctypes.c_uint,
    'l': ctypes.c_long,  'L': ctypes.c_ulong,
    'f': ctypes.c_float, 'd': ctypes.c_double
類型對應表
from multiprocessing import Process, Queue

def f(i,q):
    print(i,q.get())

if __name__ == '__main__':
    q = Queue()

    q.put("h1")
    q.put("h2")
    q.put("h3")

    for i in range(10):
        p = Process(target=f, args=(i,q,))
        p.start()
Code

當創建進程時(非使用時),共享數據會被拿到子進程中,當進程中執行完畢后,再賦值給原值。

#!/usr/bin/env python
# -*- coding:utf-8 -*-

from multiprocessing import Process, Array, RLock

def Foo(lock,temp,i):
    """
    將第0個數加100
    """
    lock.acquire()
    temp[0] = 100+i
    for item in temp:
        print i,'----->',item
    lock.release()

lock = RLock()
temp = Array('i', [11, 22, 33, 44])

for i in range(20):
    p = Process(target=Foo,args=(lock,temp,i,))
    p.start()
進程鎖實例

進程池

進程池內部維護一個進程序列,當使用時,則去進程池中獲取一個進程,如果進程池序列中沒有可供使用的進進程,那么程序就會等待,直到進程池中有可用進程為止。

進程池中有兩個方法:

  • apply
  • apply_async
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from  multiprocessing import Process,Pool
import time
 
def Foo(i):
    time.sleep(2)
    return i+100
 
def Bar(arg):
    print arg
 
pool = Pool(5)
#print pool.apply(Foo,(1,))
#print pool.apply_async(func =Foo, args=(1,)).get()
 
for i in range(10):
    pool.apply_async(func=Foo, args=(i,),callback=Bar)
 
print 'end'
pool.close()
pool.join()#進程池中進程執行完畢后再關閉,如果注釋,那么程序直接關閉。

協程

線程和進程的操作是由程序觸發系統接口,最后的執行者是系統;協程的操作則是程序員。

協程存在的意義:對於多線程應用,CPU通過切片的方式來切換線程間的執行,線程切換時需要耗時(保存狀態,下次繼續)。協程,則只使用一個線程,在一個線程中規定某個代碼塊執行順序。

協程的適用場景:當程序中存在大量不需要CPU的操作時(IO),適用於協程;

greenlet

#!/usr/bin/env python
# -*- coding:utf-8 -*-


from greenlet import greenlet


def test1():
    print 12
    gr2.switch()
    print 34
    gr2.switch()


def test2():
    print 56
    gr1.switch()
    print 78

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

gevent

import gevent

def foo():
    print('Running in foo')
    gevent.sleep(0)
    print('Explicit context switch to foo again')

def bar():
    print('Explicit context to bar')
    gevent.sleep(0)
    print('Implicit context switch back to bar')

gevent.joinall([
    gevent.spawn(foo),
    gevent.spawn(bar),
])

遇到IO操作自動切換:

#!/usr/bin/env python
# -*- coding:utf-8 -*-


from gevent import monkey

monkey.patch_all()
import threading
import gevent
import time


def eat():
    print(threading.current_thread().getName())
    print('eat food 1')
    time.sleep(20)
    print('eat food 2')


def play():
    print(threading.current_thread().getName())
    print('play 1')
    time.sleep(20)
    print('play 2')


g1 = gevent.spawn(eat)
g2 = gevent.spawn(play)
gevent.joinall([g1, g2])
print('')
View Code
from gevent import monkey; monkey.patch_all()
import gevent
import urllib2

def f(url):
    print('GET: %s' % url)
    resp = urllib2.urlopen(url)
    data = resp.read()
    print('%d bytes received from %s.' % (len(data), url))

gevent.joinall([
        gevent.spawn(f, 'https://www.python.org/'),
        gevent.spawn(f, 'https://www.yahoo.com/'),
        gevent.spawn(f, 'https://github.com/'),
])
View Code

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM