原文:http://blog.csdn.net/zouxy09/article/details/48903179
一、概述
機器學習算法在近幾年大數據點燃的熱火熏陶下已經變得被人所“熟知”,就算不懂得其中各算法理論,叫你喊上一兩個著名算法的名字,你也能昂首挺胸脫口而出。當然了,算法之林雖大,但能者還是有限,能適應某些環境並取得較好效果的算法會脫穎而出,而表現平平者則被歷史所淡忘。隨着機器學習社區的發展和實踐驗證,這群脫穎而出者也逐漸被人所認可和青睞,同時獲得了更多社區力量的支持、改進和推廣。
以最廣泛的分類算法為例,大致可以分為線性和非線性兩大派別。線性算法有著名的邏輯回歸、朴素貝葉斯、最大熵等,非線性算法有隨機森林、決策樹、神經網絡、核機器等等。線性算法舉的大旗是訓練和預測的效率比較高,但最終效果對特征的依賴程度較高,需要數據在特征層面上是線性可分的。因此,使用線性算法需要在特征工程上下不少功夫,盡量對特征進行選擇、變換或者組合等使得特征具有區分性。而非線性算法則牛逼點,可以建模復雜的分類面,從而能更好的擬合數據。
那在我們選擇了特征的基礎上,哪個機器學習算法能取得更好的效果呢?誰也不知道。實踐是檢驗哪個好的不二標准。那難道要苦逼到寫五六個機器學習的代碼嗎?No,機器學習社區的力量是強大的,碼農界的共識是不重復造輪子!因此,對某些較為成熟的算法,總有某些優秀的庫可以直接使用,省去了大伙調研的大部分時間。
基於目前使用python較多,而python界中遠近聞名的機器學習庫要數scikit-learn莫屬了。這個庫優點很多。簡單易用,接口抽象得非常好,而且文檔支持實在感人。本文中,我們可以封裝其中的很多機器學習算法,然后進行一次性測試,從而便於分析取優。當然了,針對具體算法,超參調優也非常重要。
二、Scikit-learn的python實踐
2.1、Python的准備工作
Python一個備受歡迎的點是社區支持很多,有非常多優秀的庫或者模塊。但是某些庫之間有時候也存在依賴,所以要安裝這些庫也是挺繁瑣的過程。但總有人忍受不了這種繁瑣,都會開發出不少自動化的工具來節省各位客官的時間。其中,個人總結,安裝一個python的庫有以下三種方法:
1)Anaconda
這是一個非常齊全的python發行版本,最新的版本提供了多達195個流行的python包,包含了我們常用的numpy、scipy等等科學計算的包。有了它,媽媽再也不用擔心我焦頭爛額地安裝一個又一個依賴包了。Anaconda在手,輕松我有!下載地址如下:http://www.continuum.io/downloads
2)Pip
使用過Ubuntu的人,對apt-get的愛只有自己懂。其實對Python的庫的下載和安裝可以借助pip工具的。需要安裝什么庫,直接下載和安裝一條龍服務。在pip官網https://pypi.python.org/pypi/pip下載安裝即可。未來的需求就在#pip install xx 中。
3)源碼包
如果上述兩種方法都沒有找到你的庫,那你直接把庫的源碼下載回來,解壓,然后在目錄中會有個setup.py文件。執行#python setup.py install 即可把這個庫安裝到python的默認庫目錄中。
2.2、Scikit-learn的測試
scikit-learn已經包含在Anaconda中。也可以在官方下載源碼包進行安裝。本文代碼里封裝了如下機器學習算法,我們修改數據加載函數,即可一鍵測試:
classifiers = {'NB':naive_bayes_classifier,
'KNN':knn_classifier,
'LR':logistic_regression_classifier,
'RF':random_forest_classifier,
'DT':decision_tree_classifier,
'SVM':svm_classifier,
'SVMCV':svm_cross_validation,
'GBDT':gradient_boosting_classifier
}
train_test.py
#!usr/bin/env python
#-*- coding: utf-8 -*-
import sys
import os
import time
from sklearn import metrics
import numpy as np
import cPickle as pickle
reload(sys)
sys.setdefaultencoding('utf8')
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(train_x, train_y)
return model
# KNN Classifier
def knn_classifier(train_x, train_y):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(train_x, train_y)
return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(train_x, train_y)
return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=8)
model.fit(train_x, train_y)
return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
from sklearn import tree
model = tree.DecisionTreeClassifier()
model.fit(train_x, train_y)
return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(n_estimators=200)
model.fit(train_x, train_y)
return model
# SVM Classifier
def svm_classifier(train_x, train_y):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(train_x, train_y)
return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in best_parameters.items():
print para, val
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
def read_data(data_file):
import gzip
f = gzip.open(data_file, "rb")
train, val, test = pickle.load(f)
f.close()
train_x = train[0]
train_y = train[1]
test_x = test[0]
test_y = test[1]
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
data_file = "mnist.pkl.gz"
thresh = 0.5
model_save_file = None
model_save = {}
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'GBDT']
classifiers = {'NB':naive_bayes_classifier,
'KNN':knn_classifier,
'LR':logistic_regression_classifier,
'RF':random_forest_classifier,
'DT':decision_tree_classifier,
'SVM':svm_classifier,
'SVMCV':svm_cross_validation,
'GBDT':gradient_boosting_classifier
}
print 'reading training and testing data...'
train_x, train_y, test_x, test_y = read_data(data_file)
num_train, num_feat = train_x.shape
num_test, num_feat = test_x.shape
is_binary_class = (len(np.unique(train_y)) == 2)
print '******************** Data Info *********************'
print '#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat)
for classifier in test_classifiers:
print '******************* %s ********************' % classifier
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print 'training took %fs!' % (time.time() - start_time)
predict = model.predict(test_x)
if model_save_file != None:
model_save[classifier] = model
if is_binary_class:
precision = metrics.precision_score(test_y, predict)
recall = metrics.recall_score(test_y, predict)
print 'precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)
accuracy = metrics.accuracy_score(test_y, predict)
print 'accuracy: %.2f%%' % (100 * accuracy)
if model_save_file != None:
pickle.dump(model_save, open(model_save_file, 'wb'))
四、測試結果
本次使用mnist手寫體庫進行實驗:http://deeplearning.net/data/mnist/mnist.pkl.gz。共5萬訓練樣本和1萬測試樣本。
代碼運行結果如下:
reading training and testing data... ******************** Data Info ********************* #training data: 50000, #testing_data: 10000, dimension: 784 ******************* NB ******************** training took 0.287000s! accuracy: 83.69% ******************* KNN ******************** training took 31.991000s! accuracy: 96.64% ******************* LR ******************** training took 101.282000s! accuracy: 91.99% ******************* RF ******************** training took 5.442000s! accuracy: 93.78% ******************* DT ******************** training took 28.326000s! accuracy: 87.23% ******************* SVM ******************** training took 3152.369000s! accuracy: 94.35% ******************* GBDT ******************** training took 7623.761000s! accuracy: 96.18%
在這個數據集中,由於數據分布的團簇性較好(如果對這個數據庫了解的話,看它的t-SNE映射圖就可以看出來。由於任務簡單,其在deep learning界已被認為是toy dataset),因此KNN的效果不賴。GBDT是個非常不錯的算法,在kaggle等大數據比賽中,狀元探花榜眼之列經常能見其身影。三個臭皮匠賽過諸葛亮,還是被驗證有道理的,特別是三個臭皮匠還能力互補的時候!
還有一個在實際中非常有效的方法,就是融合這些分類器,再進行決策。例如簡單的投票,效果都非常不錯。建議在實踐中,大家都可以嘗試下。
