# 婚外情數據集 data(Affairs, package = "AER") summary(Affairs) table(Affairs$affairs) # 用二值變量,是或否 Affairs$ynaffair[Affairs$affairs > 0] <- 1 Affairs$ynaffair[Affairs$affairs == 0] <- 0 Affairs$ynaffair <- factor(Affairs$ynaffair, levels = c(0, 1), labels = c("No", "Yes")) table(Affairs$ynaffair) #用glm fit.full <- glm(ynaffair ~ gender + age + yearsmarried + children + religiousness + education + occupation + rating, data = Affairs, family = binomial()) summary(fit.full)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.5713 -0.7499 -0.5690 -0.2539 2.5191
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.37726 0.88776 1.551 0.120807
gendermale 0.28029 0.23909 1.172 0.241083
age -0.04426 0.01825 -2.425 0.015301 *
yearsmarried 0.09477 0.03221 2.942 0.003262 **
childrenyes 0.39767 0.29151 1.364 0.172508
religiousness -0.32472 0.08975 -3.618 0.000297 ***
education 0.02105 0.05051 0.417 0.676851
occupation 0.03092 0.07178 0.431 0.666630
rating -0.46845 0.09091 -5.153 2.56e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 675.38 on 600 degrees of freedom
Residual deviance: 609.51 on 592 degrees of freedom
AIC: 627.51
Number of Fisher Scoring iterations: 4
#結果是有些變量不顯著把它們都去掉
fit.reduced <- glm(ynaffair ~ age + yearsmarried + religiousness + rating, data = Affairs, family = binomial()) summary(fit.reduced)
Call:
glm(formula = ynaffair ~ age + yearsmarried + religiousness +
rating, family = binomial(), data = Affairs)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6278 -0.7550 -0.5701 -0.2624 2.3998
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.93083 0.61032 3.164 0.001558 **
age -0.03527 0.01736 -2.032 0.042127 *
yearsmarried 0.10062 0.02921 3.445 0.000571 ***
religiousness -0.32902 0.08945 -3.678 0.000235 ***
rating -0.46136 0.08884 -5.193 2.06e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 675.38 on 600 degrees of freedom
Residual deviance: 615.36 on 596 degrees of freedom
AIC: 625.36
Number of Fisher Scoring iterations: 4
#如上,發現每個系數都非常顯著。這是兩模型嵌套,可以使用anova進行比較,對於廣義線性回歸,可用卡方檢驗。
anova(fit.reduced, fit.full, test = "Chisq")
Analysis of Deviance Table
Model 1: ynaffair ~ age + yearsmarried + religiousness + rating
Model 2: ynaffair ~ gender + age + yearsmarried + children + religiousness +
education + occupation + rating
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 596 615.36
2 592 609.51 4 5.8474 0.2108
#卡方值不顯著(0.21),表明新模型與包含了全部變量的模型擬合程度一樣好。這可以確認添4個被去掉的變量不會顯著提高方程的預測精度,可以依據更簡單的模型進行解釋。
13.2.1 解釋模型參數
看回歸系數:當其他預測變量不變時,一單位預測變量的變化可引起的響應變量對數優勢比的變化。
coef(fit.reduced)
(Intercept) age yearsmarried religiousness rating
1.93083017 -0.03527112 0.10062274 -0.32902386 -0.46136144
由於對數優勢比解釋性差,可對結果進行指數化
exp(coef(fit.reduced))
(Intercept) age yearsmarried religiousness rating
6.8952321 0.9653437 1.1058594 0.7196258 0.6304248
可以看到婚齡增加一年,婚外情的優勢比將乘以1.106(其他不變),年齡增加一歲,婚外情優勢比乘以0.965。
因此,隨着婚齡增加和年齡、宗教信仰與婚姻評分的降低,婚外情優勢比將上升。
因為預測變量不能等於0,截距項在此處沒有特定含義。
還可以使用confint函數獲取置信區間。
exp(confint(fit.reduced))
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 2.1255764 23.3506030
age 0.9323342 0.9981470
yearsmarried 1.0448584 1.1718250
religiousness 0.6026782 0.8562807
rating 0.5286586 0.7493370
13.2.2 評價預測變量對結果概率的影響
testdata <- data.frame(rating = c(1, 2, 3, 4, 5), age = mean(Affairs$age), yearsmarried = mean(Affairs$yearsmarried), religiousness = mean(Affairs$religiousness)) testdata$prob <- predict(fit.reduced, newdata = testdata, type = "response") testdata
rating age yearsmarried religiousness prob
1 1 32.48752 8.177696 3.116473 0.5302296
2 2 32.48752 8.177696 3.116473 0.4157377
3 3 32.48752 8.177696 3.116473 0.3096712
4 4 32.48752 8.177696 3.116473 0.2204547
5 5 32.48752 8.177696 3.116473 0.1513079
從結果看出,當婚姻評分從1(很不幸福)變成5(非常幸福),婚外情概率從0.53降低到0.15(假定年齡等因素不變),看看年齡影響
testdata <- data.frame(rating = mean(Affairs$rating), age = seq(17, 57, 10), yearsmarried = mean(Affairs$yearsmarried), religiousness = mean(Affairs$religiousness)) testdata$prob <- predict(fit.reduced, newdata = testdata, type = "response") testdata
rating age yearsmarried religiousness prob
1 3.93178 17 8.177696 3.116473 0.3350834
2 3.93178 27 8.177696 3.116473 0.2615373
3 3.93178 37 8.177696 3.116473 0.1992953
4 3.93178 47 8.177696 3.116473 0.1488796
5 3.93178 57 8.177696 3.116473 0.1094738
從結果看出,當其他變量不變,年齡從17增加到57時,婚外情概率將從0.34降低到0.11,利用該方法,可探究每一個預測變量對結果概率的影響。
13.2.3 過度離勢
過度離勢:觀測到的響應變量方差大於期望的二項分布的方式。這會導致奇異的標准誤檢驗和不精確的顯著性檢驗。
若出現過度離勢,還可以用glm擬合Logistic回歸,但此時需要將二項分布改為類二項分布。
檢查方法:比較二項分布模型和殘差偏差與殘差自由度,如果比值比1大很多,便可認為存在過度離勢。
本例中,比值=615.36/596=1.02,沒有過度離勢。
還可以對過度離勢進行檢驗。為此,需要擬合模型兩次,第一次使用family=binomial,第二次使用family=quasibinomial,假設第一次glm返回對象記為fit,第二次返回對象記為fit.od,用pchisq,提供的p值可對零假設(比值為1)與備擇假設(比值不等於1)進行檢驗。
fit <- glm(ynaffair ~ age + yearsmarried + religiousness + rating, family = binomial(), data = Affairs) fit.od <- glm(ynaffair ~ age + yearsmarried + religiousness + rating, family = quasibinomial(), data = Affairs) pchisq(summary(fit.od)$dispersion * fit$df.residual, fit$df.residual, lower = F)
結果值為0.34不顯著,因此不存在過度離勢。
13.3 泊松回歸
data(breslow.dat, package = "robust") names(breslow.dat) summary(breslow.dat[c(6, 7, 8, 10)])
opar <- par(no.readonly = TRUE) par(mfrow = c(1, 2)) attach(breslow.dat) hist(sumY, breaks = 20, xlab = "Seizure Count", main = "Distribution of Seizures") boxplot(sumY ~ Trt, xlab = "Treatment", main = "Group Comparisons") par(opar)
從圖上可以看到因變量的偏倚特性及可能的離群點。葯物治療下發病數變小,方差也變小。與標准最小二乘回歸不同,泊松回歸並不關注方差異質量性。
fit <- glm(sumY ~ Base + Age + Trt, data = breslow.dat, family = poisson()) summary(fit)
結果非常顯著
13.3.1 解釋模型參數
coef(fit)
exp(coef(fit))
(Intercept) Base Age Trtprogabide
1.94882593 0.02265174 0.02274013 -0.15270095
年齡回歸參數為0.0227,表明保持其他預測變量不變,年齡增加一歲,癲閑發病數的對數均值將增加0.03。
指數化系數中,年齡增加一歲,發病數乘以1.023。Trt變化,發病數*0.86。也就是說,保持發病數和年齡不變,服葯組相對於安慰劑組發病數降低了20%。
13.3.2 過度離勢
比值=559.44/55=10.17,大於1,說明存在過度離勢。
也可以用以下方法檢驗過度離勢。
library(qcc)
qcc.overdispersion.test(breslow.dat$sumY, type = "poisson")
P值為0,存在過度離勢。
# fit model with quasipoisson
fit.od <- glm(sumY ~ Base + Age + Trt, data = breslow.dat,
family = quasipoisson())
summary(fit.od)
過度離勢的原因:
1.遺漏了某個重要的預測變量
2.可能因為事件相關。泊松分布中,每個事件都被認為是獨立發生的。就是對隨便一位病人,每一次發病概率都認為是相互獨立,但這並不成立。一個病人發生了40次病,第一次概率與第40次概率肯定不相同。
3.在縱向數據分析中,重復測量的數據由於內存群聚特性可導致過度離勢。這里不討論。