從我開始學習python的時候,我就開始自己總結一個python小技巧的集合。后來當我什么時候在Stack Overflow
或者在某個開源軟件里看到一段很酷代碼的時候,我就很驚訝:原來還能這么做!,當時我會努力的自己嘗試一下這段代碼,直到我懂了它的整體思路以后,我就把這段代碼加到我的集合里。這篇博客其實就是這個集合整理后一部分的公開亮相。如果你已經是個python大牛,那么基本上你應該知道這里面的大多數用法了,但我想你應該也能發現一些你不知道的新技巧。而如果你之前是一個c,c++,java的程序員,同時在學習python,或者干脆就是一個剛剛學習編程的新手,那么你應該會看到很多特別有用能讓你感到驚奇的實用技巧,就像我當初一樣。
每一個技巧和語言用法都會在一個個實例中展示給大家,也不需要有其他的說明。我已經盡力把每個例子弄的通俗易懂,但是因為讀者對python的熟悉程度不同,仍然可能難免有一些晦澀的地方。所以如果這些例子本身無法讓你讀懂,至少這個例子的標題在你后面去google搜索的時候會幫到你。
整個集合大概是按照難易程度排序,簡單常見的在前面,比較少見的在最后。
1.1 拆箱
>>> a, b, c = 1, 2, 3 >>> a, b, c (1, 2, 3) >>> a, b, c = [1, 2, 3] >>> a, b, c (1, 2, 3) >>> a, b, c = (2 * i + 1 for i in range(3)) >>> a, b, c (1, 3, 5) >>> a, (b, c), d = [1, (2, 3), 4] >>> a 1 >>> b 2 >>> c 3 >>> d 4
1.2 拆箱變量交換
1.3 擴展拆箱(只兼容python3)
1.4 負數索引
1.5 切割列表
1.6 負數索引切割列表
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> a[-4:-2] [7, 8]
1.7指定步長切割列表
1.8 負數步長切割列表
1.9 列表切割賦值
>>> a = [1, 2, 3, 4, 5] >>> a[2:3] = [0, 0] >>> a [1, 2, 0, 0, 4, 5] >>> a[1:1] = [8, 9] >>> a [1, 8, 9, 2, 0, 0, 4, 5] >>> a[1:-1] = [] >>> a [1, 5]
1.10 命名列表切割方式
>>> a = [0, 1, 2, 3, 4, 5] >>> LASTTHREE = slice(-3, None) >>> LASTTHREE slice(-3, None, None) >>> a[LASTTHREE] [3, 4, 5]
1.11 列表以及迭代器的壓縮和解壓縮
>>> a = [1, 2, 3] >>> b = ['a', 'b', 'c'] >>> z = zip(a, b) >>> z [(1, 'a'), (2, 'b'), (3, 'c')] >>> zip(*z) [(1, 2, 3), ('a', 'b', 'c')]
1.12 列表相鄰元素壓縮器
1.13 在列表中用壓縮器和迭代器滑動取值窗口
>>> def n_grams(a, n): ... z = [iter(a[i:]) for i in range(n)] ... return zip(*z) ... >>> a = [1, 2, 3, 4, 5, 6] >>> n_grams(a, 3) [(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)] >>> n_grams(a, 2) [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)] >>> n_grams(a, 4) [(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
1.14 用壓縮器反轉字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4} >>> m.items() [('a', 1), ('c', 3), ('b', 2), ('d', 4)] >>> zip(m.values(), m.keys()) [(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')] >>> mi = dict(zip(m.values(), m.keys())) >>> mi {1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.15 列表展開
>>> a = [[1, 2], [3, 4], [5, 6]] >>> list(itertools.chain.from_iterable(a)) [1, 2, 3, 4, 5, 6] >>> sum(a, []) [1, 2, 3, 4, 5, 6] >>> [x for l in a for x in l] [1, 2, 3, 4, 5, 6] >>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] >>> [x for l1 in a for l2 in l1 for x in l2] [1, 2, 3, 4, 5, 6, 7, 8] >>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]] >>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x] >>> flatten(a) [1, 2, 3, 4, 5, 6, 7, 8]
1.16 生成器表達式
1.17 字典推導
>>> m = {x: x ** 2 for x in range(5)} >>> m {0: 0, 1: 1, 2: 4, 3: 9, 4: 16} >>> m = {x: 'A' + str(x) for x in range(10)} >>> m {0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}
1.18 用字典推導反轉字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4} >>> m {'d': 4, 'a': 1, 'b': 2, 'c': 3} >>> {v: k for k, v in m.items()} {1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.19 命名元組
>>> Point = collections.namedtuple('Point', ['x', 'y']) >>> p = Point(x=1.0, y=2.0) >>> p Point(x=1.0, y=2.0) >>> p.x 1.0 >>> p.y 2.0
1.20 繼承命名元組
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])): ... __slots__ = () ... def __add__(self, other): ... return Point(x=self.x + other.x, y=self.y + other.y) ... >>> p = Point(x=1.0, y=2.0) >>> q = Point(x=2.0, y=3.0) >>> p + q Point(x=3.0, y=5.0)
1.21 操作集合
1.22 操作多重集合
1.23 統計在可迭代器中最常出現的元素
1.24 兩端都可操作的隊列
1.25 有最大長度的雙端隊列
1.26 可排序詞典
1.27 默認詞典
1.28 默認字典的簡單樹狀表達
1.29 對象到唯一計數的映射
1.30 最大和最小的幾個列表元素
1.31 兩個列表的笛卡爾積
1.32 列表組合和列表元素替代組合
1.33 列表元素排列組合
1.34 可鏈接迭代器
1.35 根據文件指定列類聚