為了方便介紹,假設推薦系統中有用戶集合有6個用戶,即U={u1,u2,u3,u4,u5,u6},項目(物品)集合有7個項目,即V={v1,v2,v3,v4,v5,v6,v7},用戶對項目的評分結合為R,用戶對項目的評分范圍是[0, 5]。R具體表示如下:
推薦系統的目標就是預測出符號“?”對應位置的分值。推薦系統基於這樣一個假設:用戶對項目的打分越高,表明用戶越喜歡。因此,預測出用戶對未評分項目的評分后,根據分值大小排序,把分值高的項目推薦給用戶。怎么預測這些評分呢,方法大體上可以分為基於內容的推薦、協同過濾推薦和混合推薦三類,協同過濾算法進一步划分又可分為基於基於內存的推薦(memory-based)和基於模型的推薦(model-based),本文介紹的矩陣分解算法屬於基於模型的推薦。
矩陣分解算法的數學理論基礎是矩陣的行列變換。在《線性代數》中,我們知道矩陣A進行行變換相當於A左乘一個矩陣,矩陣A進行列變換等價於矩陣A右乘一個矩陣,因此矩陣A可以表示為A=PEQ=PQ(E是標准陣)。
矩陣分解目標就是把用戶-項目評分矩陣R分解成用戶因子矩陣和項目因子矩陣乘的形式,即R=UV,這里R是n×m, n =6, m =7,U是n×k,V是k×m。直觀地表示如下:
高維的用戶-項目評分矩陣分解成為兩個低維的用戶因子矩陣和項目因子矩陣,因此矩陣分解和PCA不同,不是為了降維。用戶i對項目j的評分r_ij =innerproduct(u_i, v_j),更一般的情況是r_ij =f(U_i, V_j),這里為了介紹方便就是用u_i和v_j內積的形式。下面介紹評估低維矩陣乘積擬合評分矩陣的方法。
首先假設,用戶對項目的真實評分和預測評分之間的差服從高斯分布,基於這一假設,可推導出目標函數如下:
最后得到矩陣分解的目標函數如下:
從最終得到得目標函數可以直觀地理解,預測的分值就是盡量逼近真實的已知評分值。有了目標函數之后,下面就開始談優化方法了,通常的優化方法分為兩種:交叉最小二乘法(alternative least squares)和隨機梯度下降法(stochastic gradient descent)。
首先介紹交叉最小二乘法,之所以交叉最小二乘法能夠應用到這個目標函數主要是因為L對U和V都是凸函數。首先分別對用戶因子向量和項目因子向量求偏導,令偏導等於0求駐點,具體解法如下:
上面就是用戶因子向量和項目因子向量的更新公式,迭代更新公式即可找到可接受的局部最優解。迭代終止的條件下面會講到。
接下來講解隨機梯度下降法,這個方法應用的最多。大致思想是讓變量沿着目標函數負梯度的方向移動,直到移動到極小值點。直觀的表示如下:
其實負梯度的負方向,當函數是凸函數時是函數值減小的方向走;當函數是凹函數時是往函數值增大的方向移動。而矩陣分解的目標函數L是凸函數,因此,通過梯度下降法我們能夠得到目標函數L的極小值(理想情況是最小值)。
言歸正傳,通過上面的講解,我們可以獲取梯度下降算法的因子矩陣更新公式,具體如下:
(3)和(4)中的γ指的是步長,也即是學習速率,它是一個超參數,需要調參確定。對於梯度見(1)和(2)。
下面說下迭代終止的條件。迭代終止的條件有很多種,就目前我了解的主要有
1) 設置一個閾值,當L函數值小於閾值時就停止迭代,不常用
2) 設置一個閾值,當前后兩次函數值變化絕對值小於閾值時,停止迭代
3) 設置固定迭代次數
另外還有一個問題,當用戶-項目評分矩陣R非常稀疏時,就會出現過擬合(overfitting)的問題,過擬合問題的解決方法就是正則化(regularization)。正則化其實就是在目標函數中加上用戶因子向量和項目因子向量的二范數,當然也可以加上一范數。至於加上一范數還是二范數要看具體情況,一范數會使很多因子為0,從而減小模型大小,而二范數則不會它只能使因子接近於0,而不能使其為0,關於這個的介紹可參考論文Regression Shrinkage and Selection via the Lasso。引入正則化項后目標函數變為:
(5)中λ_1和λ_2是指正則項的權重,這兩個值可以取一樣,具體取值也需要根據數據集調參得到。優化方法和前面一樣,只是梯度公式需要更新一下。
矩陣分解算法目前在推薦系統中應用非常廣泛,對於使用RMSE作為評價指標的系統尤為明顯,因為矩陣分解的目標就是使RMSE取值最小。但矩陣分解有其弱點,就是解釋性差,不能很好為推薦結果做出解釋。
后面會繼續介紹矩陣分解算法的擴展性問題,就是如何加入隱反饋信息,加入時間信息等。