Java對象的分配,根據其過程,將其分為快速分配和慢速分配兩種形式,其中快速分配使用無鎖的指針碰撞技術在新生代的Eden區上進行分配,而慢速分配根據堆的實現方式、GC的實現方式、代的實現方式不同而具有不同的分配調用層次。
下面就以bytecodeInterpreter解釋器對於new指令的解釋出發,分析實例對象的內存分配過程:
一、快速分配
1.實例的創建首先需要知道該類型是否被加載和正確解析,根據字節碼所指定的CONSTANT_Class_info常量池索引,獲取對象的類型信息並調用is_unresovled_klass()驗證該類是否被解析過,在創建類的實例之前,必須確保該類型已經被正確加載和解析。
CASE(_new): { u2 index = Bytes::get_Java_u2(pc+1); constantPoolOop constants = istate->method()->constants(); if (!constants->tag_at(index).is_unresolved_klass()) {
2.接下來獲取該類型在虛擬機中的表示instanceKlass(具體可以參考前文實例探索Java對象的組織結構)
oop entry = constants->slot_at(index).get_oop(); assert(entry->is_klass(), "Should be resolved klass"); klassOop k_entry = (klassOop) entry; assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass"); instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
3.當類型已經被初始化並且可以被快速分配時,那么將根據UseTLAB來決定是否使用TLAB技術(Thread-Local Allocation Buffers,線程局部分配緩存技術)來將分配工作交由線程自行完成。TLAB是每個線程在Java堆中預先分配了一小塊內存,當有對象創建請求內存分配時,就會在該塊內存上進行分配,而不需要在Eden區通過同步控制進行內存分配。
if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) { size_t obj_size = ik->size_helper(); oop result = NULL; // If the TLAB isn't pre-zeroed then we'll have to do it bool need_zero = !ZeroTLAB; if (UseTLAB) { result = (oop) THREAD->tlab().allocate(obj_size); } if (result == NULL) { need_zero = true;
4.如果不使用TLAB或在TLAB上分配失敗,則會嘗試在堆的Eden區上進行分配。Universe::heap()返回虛擬機內存體系所使用的CollectedHeap,其top_addr()返回的是Eden區空閑塊的起始地址變量_top的地址,end_addr()是Eden區空閑塊的結束地址變量_end的地址。故這里compare_to是Eden區空閑塊的起始地址,new_top為使用該塊空閑塊進行分配后新的空閑塊起始地址。這里使用CAS操作進行空閑塊的同步操作,即觀察_top的預期值,若與compare_to相同,即沒有其他線程操作該變量,則將new_top賦給_top真正成為新的空閑塊起始地址值,這種分配技術叫做bump-the-pointer(指針碰撞技術)。
retry: HeapWord* compare_to = *Universe::heap()->top_addr(); HeapWord* new_top = compare_to + obj_size; if (new_top <= *Universe::heap()->end_addr()) { if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) { goto retry; } result = (oop) compare_to; } }
5.根據是否需要填0選項,對分配空間的對象數據區進行填0
if (result != NULL) { // Initialize object (if nonzero size and need) and then the header if (need_zero ) { HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize; obj_size -= sizeof(oopDesc) / oopSize; if (obj_size > 0 ) { memset(to_zero, 0, obj_size * HeapWordSize); } }
6.根據是否使用偏向鎖,設置對象頭信息,然后設置對象的klassOop引用(這樣對象本身就獲取了獲取類型數據的途徑)
if (UseBiasedLocking) { result->set_mark(ik->prototype_header()); } else { result->set_mark(markOopDesc::prototype()); } result->set_klass_gap(0); result->set_klass(k_entry);
7.把對象地址引入棧,並繼續執行下一個字節碼
SET_STACK_OBJECT(result, 0); UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
8.若該類型沒有被解析,就會調用InterpreterRuntime的_new函數完成慢速分配
// Slow case allocation CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index), handle_exception); SET_STACK_OBJECT(THREAD->vm_result(), 0); THREAD->set_vm_result(NULL); UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
以上就是快速分配的過程,其流程圖如下,關鍵在於快速分配在Eden區所使用的無鎖指針碰撞技術
二、慢速分配
接下來看看慢速分配是如何進行的:
1.InterpreterRuntime的_new函數定義在/hotspot/src/share/vm/interpreter/interpreterRuntime.cpp中:
IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, constantPoolOopDesc* pool, int index)) klassOop k_oop = pool->klass_at(index, CHECK); instanceKlassHandle klass (THREAD, k_oop); // Make sure we are not instantiating an abstract klass klass->check_valid_for_instantiation(true, CHECK); // Make sure klass is initialized klass->initialize(CHECK); oop obj = klass->allocate_instance(CHECK); thread->set_vm_result(obj); IRT_END
該函數在進行了對象類的檢查(確保不是抽象類)和對該類型進行初始化后,調用instanceKlassHandle的allocate_instance進行內存分配。
其中instanceKlassHandle類由DEF_KLASS_HANDLE宏進行聲明,注意該類重載了成員訪問運算符”->”,這里的一系列成員方法的訪問實際上是instanceKlass對象的訪問。
type* operator -> () const { return (type*)obj()->klass_part(); }
2.所以實際上是調用了instanceKlass的allocate_instance()成員函數:
allocate_instance()定義在/hotspot/src/share/vm/oops/instanceKlass.cpp
(1).檢查是否設置了Finalizer函數,獲取對象所需空間的大小
instanceOop instanceKlass::allocate_instance(TRAPS) { bool has_finalizer_flag = has_finalizer(); // Query before possible GC int size = size_helper(); // Query before forming handle.
(2).調用CollectedHeap的obj_allocate()創建一個instanceOop(堆上的對象實例),並根據情況注冊Finalizer函數
KlassHandle h_k(THREAD, as_klassOop()); instanceOop i; i = (instanceOop)CollectedHeap::obj_allocate(h_k, size, CHECK_NULL); if (has_finalizer_flag && !RegisterFinalizersAtInit) { i = register_finalizer(i, CHECK_NULL); } return i;
3.CollectedHeap::ojb_allocate()定義在/hotspot/src/share/vm/gc_interface/CollectedHeap.hpp中,它將轉而調用內聯函數obj_allocate()
4.obj_allocate()定義在/hotspot/src/share/vm/gc_interface/CollectedHeap.inline.h中,若當正處於gc狀態時,不允許進行內存分配申請,否則將調用common_mem_allocate_init()進行內存分配並返回獲得內存的起始地址,隨后將調用post_allocation_setup_obj()進行一些初始化工作
oop CollectedHeap::obj_allocate(KlassHandle klass, int size, TRAPS) { //...assert HeapWord* obj = common_mem_allocate_init(size, false, CHECK_NULL); post_allocation_setup_obj(klass, obj, size); NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size)); return (oop)obj; }
5.common_mem_allocate_init()分為兩部分,將分別調用common_mem_allocate_noinit()進行內存空間的分配和調用init_obj()進行對象空間的初始化
HeapWord* CollectedHeap::common_mem_allocate_init(size_t size, bool is_noref, TRAPS) { HeapWord* obj = common_mem_allocate_noinit(size, is_noref, CHECK_NULL); init_obj(obj, size); return obj; }
6.common_mem_allocate_noinit()如下:
(1).若使用了本地線程分配緩沖TLAB,則會調用allocate_from_tlab()嘗試從TLAB中分配內存
HeapWord* result = NULL; if (UseTLAB) { result = CollectedHeap::allocate_from_tlab(THREAD, size); if (result != NULL) { assert(!HAS_PENDING_EXCEPTION, "Unexpected exception, will result in uninitialized storage"); return result; } }
(2).否則會調用堆的mem_allocate()嘗試分配
bool gc_overhead_limit_was_exceeded = false; result = Universe::heap()->mem_allocate(size, is_noref, false, &gc_overhead_limit_was_exceeded);
(3).統計分配的字節數
if (result != NULL) { //... THREAD->incr_allocated_bytes(size * HeapWordSize); return result; }
(4).否則說明申請失敗,若在申請過程中gc沒有超時,則拋出OOM異常
if (!gc_overhead_limit_was_exceeded) { // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support report_java_out_of_memory("Java heap space"); if (JvmtiExport::should_post_resource_exhausted()) { JvmtiExport::post_resource_exhausted( JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR | JVMTI_RESOURCE_EXHAUSTED_JAVA_HEAP, "Java heap space"); } THROW_OOP_0(Universe::out_of_memory_error_java_heap());
7.對象內存分配后的初始化過程包括兩部分,一個是init_obj()完成對對象內存空間的對齊和填充,一個是post_allocation_setup_obj()對堆上的oop對象進行初始化。
(1).init_obj():
void CollectedHeap::init_obj(HeapWord* obj, size_t size) { assert(obj != NULL, "cannot initialize NULL object"); const size_t hs = oopDesc::header_size(); assert(size >= hs, "unexpected object size"); ((oop)obj)->set_klass_gap(0); Copy::fill_to_aligned_words(obj + hs, size - hs); }
hs就是對象頭的大小,fill_to_aligned_words將對象空間除去對象頭的部分做填0處理,該函數定義在/hotspot/src/share/vm/utilities/copy.h中,並轉而調用pd_fill_to_aligned_words()。
pd_fill_to_aligned_words根據不同平台實現,以x86平台為例,該函數定義在/hotspot/src/cpu/x86/vm/copy_x86.h中:
static void pd_fill_to_words(HeapWord* tohw, size_t count, juint value) { #ifdef AMD64 julong* to = (julong*) tohw; julong v = ((julong) value << 32) | value; while (count-- > 0) { *to++ = v; } #else juint* to = (juint*)tohw; count *= HeapWordSize / BytesPerInt; while (count-- > 0) { *to++ = value; } #endif // AMD64 }
該函數的作用就是先將地址類型轉換,然后把堆的字數轉化為字節數,再對該段內存進行填值(value = 0)處理
(2).post_allocation_setup_obj()調用了post_allocation_setup_common()進行初始化工作,然后調用post_allocation_notify()通知JVMTI和dtrace
void CollectedHeap::post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, size_t size) { post_allocation_setup_common(klass, obj, size); assert(Universe::is_bootstrapping() || !((oop)obj)->blueprint()->oop_is_array(), "must not be an array"); // notify jvmti and dtrace post_allocation_notify(klass, (oop)obj); }
post_allocation_setup_common()如下:
void CollectedHeap::post_allocation_setup_common(KlassHandle klass, HeapWord* obj, size_t size) { post_allocation_setup_no_klass_install(klass, obj, size); post_allocation_install_obj_klass(klass, oop(obj), (int) size); }
post_allocation_setup_no_klass_install()根據是否使用偏向鎖,設置對象頭信息等,即初始化oop的_mark字段。post_allocation_install_obj_klass()設置對象實例的klassOop引用,即初始化oop的_metadata(_klass/_compressed_klass)字段 。
以上內容就是堆實現無關的慢速分配過程,其流程圖如下:
三、堆的分配實現
1.mem_allocate將由堆的實現類型定義,以GenCollectedHeap為例:
HeapWord* GenCollectedHeap::mem_allocate(size_t size, bool is_large_noref, bool is_tlab, bool* gc_overhead_limit_was_exceeded) { return collector_policy()->mem_allocate_work(size, is_tlab, gc_overhead_limit_was_exceeded); }
2.由之前分析,GenCollectedHeap根據用戶配置有着不同的GC策略(默認的和配置UseSerialGC的MarkSweepPolicy、配置UseComcMarkSweepGC和UseAdaptiveSizePolicy的ASConcurrentMarkSweepPolicy、只配置UseComcMarkSweepGC的ConcurrentMarkSweepPolicy),但這里,對象內存空間的基本結構和分配的思想是一致的,所以統一由GenCollectorPolicy實現進行分代層級的對象分配操作,但具體的工作將交由各代的實現者來完成。
GenCollectedPolicy的mem_allocate_work()函數如下:
(1).gch指向GenCollectedHeap堆,內存分配請求將循環不斷地進行嘗試,直到分配成功或GC后分配失敗
HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size, bool is_tlab, bool* gc_overhead_limit_was_exceeded) { GenCollectedHeap *gch = GenCollectedHeap::heap(); //... // Loop until the allocation is satisified, // or unsatisfied after GC. for (int try_count = 1; /* return or throw */; try_count += 1) {
對於占用空間比較大的對象,如果經常放在新生代,那么剩余的內存空間就會非常緊張,將可能會導致新生代內存垃圾回收的頻繁觸發。故若對象的大小超過一定值,那么就不應該分配在新生代。
//...緊接上面部分 HandleMark hm; // discard any handles allocated in each iteration // First allocation attempt is lock-free. Generation *gen0 = gch->get_gen(0); if (gen0->should_allocate(size, is_tlab)) { result = gen0->par_allocate(size, is_tlab); if (result != NULL) { assert(gch->is_in_reserved(result), "result not in heap"); return result; } }
若對象應該在新生代上分配,就會調用新生代的par_allocate()進行分配,注意在新生代普遍是采用復制收集器的,而內存的分配對應采用了無鎖式的指針碰撞技術。
(2).在新生代上嘗試無鎖式的分配失敗,那么就獲取堆的互斥鎖,並嘗試在各代空間內進行內存分配
unsigned int gc_count_before; // read inside the Heap_lock locked region { MutexLocker ml(Heap_lock); //... bool first_only = ! should_try_older_generation_allocation(size); result = gch->attempt_allocation(size, is_tlab, first_only); if (result != NULL) { assert(gch->is_in_reserved(result), "result not in heap"); return result; }
其中should_try_older_generation_allocation()如下:
bool GenCollectorPolicy::should_try_older_generation_allocation( size_t word_size) const { GenCollectedHeap* gch = GenCollectedHeap::heap(); size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc(); return (word_size > heap_word_size(gen0_capacity)) || GC_locker::is_active_and_needs_gc() || gch->incremental_collection_failed(); }
當進行gc前,新生代的空閑空間大小不足以分配對象,或者有線程觸發了gc,或前一次的FullGC是由MinorGC觸發的情況,都應該不再嘗試再更高的內存代上進行分配,以保證新分配的對象盡可能在新生代空間上。
attempt_allocation()實現如下:
HeapWord* GenCollectedHeap::attempt_allocation(size_t size, bool is_tlab, bool first_only) { HeapWord* res; for (int i = 0; i < _n_gens; i++) { if (_gens[i]->should_allocate(size, is_tlab)) { res = _gens[i]->allocate(size, is_tlab); if (res != NULL) return res; else if (first_only) break; } } // Otherwise... return NULL; }
即由低內存代向高內存代嘗試分配內存
(3).從各個代空間都找不到可用的空閑內存(或不應該在更高的內存代上分配時),如果已經有線程觸發了gc,那么當各代空間還有virtual space可擴展空間可用時,將會嘗試擴展代空間並再次嘗試進行內存分配,有點在gc前想盡一切辦法獲得內存的意思。
if (GC_locker::is_active_and_needs_gc()) { if (is_tlab) { return NULL; // Caller will retry allocating individual object } if (!gch->is_maximal_no_gc()) { // Try and expand heap to satisfy request result = expand_heap_and_allocate(size, is_tlab); // result could be null if we are out of space if (result != NULL) { return result; } }
(4).否則各代已經沒有可用的可擴展空間時,當當前線程沒有位於jni的臨界區時,將釋放堆的互斥鎖,以使得請求gc的線程可以進行gc操作,等待所有本地線程退出臨界區和gc完成后,將繼續循環嘗試進行對象的內存分配
JavaThread* jthr = JavaThread::current(); if (!jthr->in_critical()) { MutexUnlocker mul(Heap_lock); // Wait for JNI critical section to be exited GC_locker::stall_until_clear(); continue; }
(5).若各代無法分配對象的內存,並且沒有gc被觸發,那么當前請求內存分配的線程將發起一次gc,這里將提交給VM一個GenCollectForAllocation操作以觸發gc,當操作執行成功並返回時,若gc鎖已被獲得,那么說明已經由其他線程觸發了gc,將繼續循環以等待gc完成
VM_GenCollectForAllocation op(size, is_tlab, gc_count_before); VMThread::execute(&op); if (op.prologue_succeeded()) { result = op.result(); if (op.gc_locked()) { assert(result == NULL, "must be NULL if gc_locked() is true"); continue; // retry and/or stall as necessary }
否則將等待gc完成,若gc超時則會將gc_overhead_limit_was_exceeded設置為true返回給調用者,並重置超時狀態,並對分配的對象進行填充處理
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded(); const bool softrefs_clear = all_soft_refs_clear(); assert(!limit_exceeded || softrefs_clear, "Should have been cleared"); if (limit_exceeded && softrefs_clear) { *gc_overhead_limit_was_exceeded = true; size_policy()->set_gc_overhead_limit_exceeded(false); if (op.result() != NULL) { CollectedHeap::fill_with_object(op.result(), size); } return NULL; }
以上內容就是堆的實現相關、但代/GC實現無關的分配過程,其流程圖歸納如下: