本文結合Deep learning的一個應用,Convolution Neural Network 進行一些基本應用,參考Lecun的Document 0.1進行部分拓展,與結果展示(in python)。
分為以下幾部分:
1. Convolution(卷積)
2. Pooling(降采樣過程)
3. CNN結構
4. 跑實驗
下面分別介紹。
PS:本篇blog為ese機器學習短期班參考資料(20140516課程),本文只是簡要講最naive最simple的思想,重在實踐部分,原理課上詳述。
1. Convolution(卷積)
類似於高斯卷積,對imagebatch中的所有image進行卷積。對於一張圖,其所有feature map用一個filter卷成一張feature map。 如下面的代碼,對一個imagebatch(含兩張圖)進行操作,每個圖初始有3張feature map(R,G,B), 用兩個9*9的filter進行卷積,結果是,每張圖得到兩個feature map。
卷積操作由theano的conv.conv2d實現,這里我們用隨機參數W,b。結果有點像edge detector是不是?
Code: (詳見注釋)
- # -*- coding: utf-8 -*-
- """
- Created on Sat May 10 18:55:26 2014
- @author: rachel
- Function: convolution option of two pictures with same size (width,height)
- input: 3 feature maps (3 channels <RGB> of a picture)
- convolution: two 9*9 convolutional filters
- """
- from theano.tensor.nnet import conv
- import theano.tensor as T
- import numpy, theano
- rng = numpy.random.RandomState(23455)
- # symbol variable
- input = T.tensor4(name = 'input')
- # initial weights
- w_shape = (2,3,9,9) #2 convolutional filters, 3 channels, filter shape: 9*9
- w_bound = numpy.sqrt(3*9*9)
- W = theano.shared(numpy.asarray(rng.uniform(low = -1.0/w_bound, high = 1.0/w_bound,size = w_shape),
- dtype = input.dtype),name = 'W')
- b_shape = (2,)
- b = theano.shared(numpy.asarray(rng.uniform(low = -.5, high = .5, size = b_shape),
- dtype = input.dtype),name = 'b')
- conv_out = conv.conv2d(input,W)
- #T.TensorVariable.dimshuffle() can reshape or broadcast (add dimension)
- #dimshuffle(self,*pattern)
- # >>>b1 = b.dimshuffle('x',0,'x','x')
- # >>>b1.shape.eval()
- # array([1,2,1,1])
- output = T.nnet.sigmoid(conv_out + b.dimshuffle('x',0,'x','x'))
- f = theano.function([input],output)
- # demo
- import pylab
- from PIL import Image
- #minibatch_img = T.tensor4(name = 'minibatch_img')
- #-------------img1---------------
- img1 = Image.open(open('//home//rachel//Documents//ZJU_Projects//DL//Dataset//rachel.jpg'))
- width1,height1 = img1.size
- img1 = numpy.asarray(img1, dtype = 'float32')/256. # (height, width, 3)
- # put image in 4D tensor of shape (1,3,height,width)
- img1_rgb = img1.swapaxes(0,2).swapaxes(1,2).reshape(1,3,height1,width1) #(3,height,width)
- #-------------img2---------------
- img2 = Image.open(open('//home//rachel//Documents//ZJU_Projects//DL//Dataset//rachel1.jpg'))
- width2,height2 = img2.size
- img2 = numpy.asarray(img2,dtype = 'float32')/256.
- img2_rgb = img2.swapaxes(0,2).swapaxes(1,2).reshape(1,3,height2,width2) #(3,height,width)
- #minibatch_img = T.join(0,img1_rgb,img2_rgb)
- minibatch_img = numpy.concatenate((img1_rgb,img2_rgb),axis = 0)
- filtered_img = f(minibatch_img)
- # plot original image and two convoluted results
- pylab.subplot(2,3,1);pylab.axis('off');
- pylab.imshow(img1)
- pylab.subplot(2,3,4);pylab.axis('off');
- pylab.imshow(img2)
- pylab.gray()
- pylab.subplot(2,3,2); pylab.axis("off")
- pylab.imshow(filtered_img[0,0,:,:]) #0:minibatch_index; 0:1-st filter
- pylab.subplot(2,3,3); pylab.axis("off")
- pylab.imshow(filtered_img[0,1,:,:]) #0:minibatch_index; 1:1-st filter
- pylab.subplot(2,3,5); pylab.axis("off")
- pylab.imshow(filtered_img[1,0,:,:]) #0:minibatch_index; 0:1-st filter
- pylab.subplot(2,3,6); pylab.axis("off")
- pylab.imshow(filtered_img[1,1,:,:]) #0:minibatch_index; 1:1-st filter
- pylab.show()

2. Pooling(降采樣過程)
最常用的Maxpooling. 解決了兩個問題:
1. 減少計算量
2. 旋轉不變性 (原因自己悟)
PS:對於旋轉不變性,回憶下SIFT,LBP:采用主方向;HOG:選擇不同方向的模版
Maxpooling的降采樣過程會將feature map的長寬各減半。(下面結果圖中沒有體現出來,python自動給拉到一樣大了,但實際上像素數是減半的)
Code: (詳見注釋)
- # -*- coding: utf-8 -*-
- """
- Created on Sat May 10 18:55:26 2014
- @author: rachel
- Function: convolution option
- input: 3 feature maps (3 channels <RGB> of a picture)
- convolution: two 9*9 convolutional filters
- """
- from theano.tensor.nnet import conv
- import theano.tensor as T
- import numpy, theano
- rng = numpy.random.RandomState(23455)
- # symbol variable
- input = T.tensor4(name = 'input')
- # initial weights
- w_shape = (2,3,9,9) #2 convolutional filters, 3 channels, filter shape: 9*9
- w_bound = numpy.sqrt(3*9*9)
- W = theano.shared(numpy.asarray(rng.uniform(low = -1.0/w_bound, high = 1.0/w_bound,size = w_shape),
- dtype = input.dtype),name = 'W')
- b_shape = (2,)
- b = theano.shared(numpy.asarray(rng.uniform(low = -.5, high = .5, size = b_shape),
- dtype = input.dtype),name = 'b')
- conv_out = conv.conv2d(input,W)
- #T.TensorVariable.dimshuffle() can reshape or broadcast (add dimension)
- #dimshuffle(self,*pattern)
- # >>>b1 = b.dimshuffle('x',0,'x','x')
- # >>>b1.shape.eval()
- # array([1,2,1,1])
- output = T.nnet.sigmoid(conv_out + b.dimshuffle('x',0,'x','x'))
- f = theano.function([input],output)
- # demo
- import pylab
- from PIL import Image
- from matplotlib.pyplot import *
- #open random image
- img = Image.open(open('//home//rachel//Documents//ZJU_Projects//DL//Dataset//rachel.jpg'))
- width,height = img.size
- img = numpy.asarray(img, dtype = 'float32')/256. # (height, width, 3)
- # put image in 4D tensor of shape (1,3,height,width)
- img_rgb = img.swapaxes(0,2).swapaxes(1,2) #(3,height,width)
- minibatch_img = img_rgb.reshape(1,3,height,width)
- filtered_img = f(minibatch_img)
- # plot original image and two convoluted results
- pylab.figure(1)
- pylab.subplot(1,3,1);pylab.axis('off');
- pylab.imshow(img)
- title('origin image')
- pylab.gray()
- pylab.subplot(2,3,2); pylab.axis("off")
- pylab.imshow(filtered_img[0,0,:,:]) #0:minibatch_index; 0:1-st filter
- title('convolution 1')
- pylab.subplot(2,3,3); pylab.axis("off")
- pylab.imshow(filtered_img[0,1,:,:]) #0:minibatch_index; 1:1-st filter
- title('convolution 2')
- #pylab.show()
- # maxpooling
- from theano.tensor.signal import downsample
- input = T.tensor4('input')
- maxpool_shape = (2,2)
- pooled_img = downsample.max_pool_2d(input,maxpool_shape,ignore_border = False)
- maxpool = theano.function(inputs = [input],
- outputs = [pooled_img])
- pooled_res = numpy.squeeze(maxpool(filtered_img))
- #pylab.figure(2)
- pylab.subplot(235);pylab.axis('off');
- pylab.imshow(pooled_res[0,:,:])
- title('down sampled 1')
- pylab.subplot(236);pylab.axis('off');
- pylab.imshow(pooled_res[1,:,:])
- title('down sampled 2')
- pylab.show()
3. CNN結構
想必大家隨便google下CNN的圖都濫大街了,這里拖出來那時候學CNN的時候一張圖,自認為陪上講解的話畫得還易懂(<!--囧-->)
廢話不多說了,直接上Lenet結構圖:(從下往上順着箭頭看,最下面為底層original input)

4. CNN代碼
- rng = numpy.random.RandomState(23455)
- # transfrom x from (batchsize, 28*28) to (batchsize,feature,28,28))
- # I_shape = (28,28),F_shape = (5,5),
- N_filters_0 = 20
- D_features_0= 1
- layer0_input = x.reshape((batch_size,D_features_0,28,28))
- layer0 = LeNetConvPoolLayer(rng, input = layer0_input, filter_shape = (N_filters_0,D_features_0,5,5),
- image_shape = (batch_size,1,28,28))
- #layer0.output: (batch_size, N_filters_0, (28-5+1)/2, (28-5+1)/2) -> 20*20*12*12
- N_filters_1 = 50
- D_features_1 = N_filters_0
- layer1 = LeNetConvPoolLayer(rng,input = layer0.output, filter_shape = (N_filters_1,D_features_1,5,5),
- image_shape = (batch_size,N_filters_0,12,12))
- # layer1.output: (20,50,4,4)
- layer2_input = layer1.output.flatten(2) # (20,50,4,4)->(20,(50*4*4))
- layer2 = HiddenLayer(rng,layer2_input,n_in = 50*4*4,n_out = 500, activation = T.tanh)
- layer3 = LogisticRegression(input = layer2.output, n_in = 500, n_out = 10)
layer0, layer1 :分別是卷積+降采樣
layer2+layer3:組成一個MLP(ANN)
訓練模型:
- cost = layer3.negative_log_likelihood(y)
- params = layer3.params + layer2.params + layer1.params + layer0.params
- gparams = T.grad(cost,params)
- updates = []
- for par,gpar in zip(params,gparams):
- updates.append((par, par - learning_rate * gpar))
- train_model = theano.function(inputs = [minibatch_index],
- outputs = [cost],
- updates = updates,
- givens = {x: train_set_x[minibatch_index * batch_size : (minibatch_index+1) * batch_size],
- y: train_set_y[minibatch_index * batch_size : (minibatch_index+1) * batch_size]})
根據cost(最上層MLP的輸出NLL),對所有層的parameters進行訓練
剩下的具體見代碼和注釋。
PS:數據為MNIST所有數據
Optimization complete. Best validation score of 0.990000 % obtained at iteration 122500, with test performance 0.950000 %
