[LeetCode] Graph Valid Tree


Problem Description:

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.

For example:

Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.

Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.

Hint:

    1. Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], what should your return? Is this case a valid tree?
    2. According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together inedges.


As suggested by the hint, just check for cycle and connectedness in the graph. Both of these can be done via DFS.

The code is as follows.

 1 class Solution {
 2 public:
 3     bool validTree(int n, vector<pair<int, int>>& edges) {
 4         vector<vector<int>> neighbors(n);
 5         for (auto e : edges) {
 6             neighbors[e.first].push_back(e.second);
 7             neighbors[e.second].push_back(e.first);
 8         }
 9         vector<bool> visited(n, false);
10         if (hasCycle(neighbors, 0, -1, visited))
11             return false;
12         for (bool v : visited)
13             if (!v) return false; 
14         return true;
15     }
16 private:
17     bool hasCycle(vector<vector<int>>& neighbors, int kid, int parent, vector<bool>& visited) {
18         if (visited[kid]) return true;
19         visited[kid] = true;
20         for (auto neigh : neighbors[kid])
21             if (neigh != parent && hasCycle(neighbors, neigh, kid, visited))
22                 return true;
23         return false;
24     }
25 };

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM